Calculate the mass of $226 \stackrel{*}{5}^{\circ} \mathrm{L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

* Volume of a $10^{\prime} \times 10^{\prime} \times 88^{\prime}$ room
1 - Convert 22650 L (volume of oxygen gas) to moles using ideal gas equation.
2 - Convert moles oxygen gas to mass using formula weight

$$
\begin{aligned}
& \text { (1) } P V=n R T \\
& P=1.18 \mathrm{~atm} \\
& R=0.08206 \frac{\mathrm{L-arm}}{\mathrm{~mol} \cdot \mathrm{~h}} \\
& n=\frac{P V}{R T} \quad V=22650 \mathrm{~L} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n_{o_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{k})}=1092.222357 \mathrm{~mol} 0_{2} \\
& 32.00 \mathrm{~g} \mathrm{O}_{2}=\mathrm{mol} \mathrm{O} \\
& 1092.222357 \mathrm{~mol}_{2} \times \frac{32.00 \mathrm{~g}_{2}}{\mathrm{molo}_{2}}=35000 \mathrm{gO}_{2} \sim 771 \mathrm{3} .0 \mathrm{mg}
\end{aligned}
$$

