- oxidation and reduction always occur together. In other words, we can't just make free electrons using oxidation without giving them somewhere to go.
- Many of the types of reactions that we learned about in previous courses are redox reactions!
 - COMBINATIONS (often but not always redox)
 - DECOMPOSITIONS (often redox)
 - SINGLE REPLACEMENT (always redox)

Cu (s) +2 Ag NO3 laq)
$$\rightarrow$$
 Cu (NO3)2 laq) + 2 Ag (s)

Cu \rightarrow Cu²⁺ + 2e⁻ oxidation

2 Ag + 2e⁻ \rightarrow 2 Ag (s) reduction

net ini(\rightarrow Cu(s) + 2 Ag + (uq) \rightarrow (u²⁺(aq) + 2 Ag (s)

-COMBUSTION

2 Mg (s) + O2(g) \rightarrow 2 Mg O(s)

2 Mg (s) \rightarrow 2 Mg²⁺ + He⁻ oxidation

O2 (y) + He⁻ \rightarrow 20²⁻ reduction

A review of the reaction types we just mentioned:

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 <u>DECOMPOSITION REACTIONS</u>

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_{1}O_{2}(e) \longrightarrow 2 H_{2}O(e) + O_{2}(g)$$

- * This reaction is NOT a combustion reaction, even though O_2 is involved!
- * Combustion reactions CONSUME O₂, while this reaction PRODUCES O₂

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (O_2) to form OXIDES.
- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form: AB +

$$AB + O_{2}$$
 \rightarrow $AO + BO$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

$$(3 + 8 + 9) + 502(9) \longrightarrow 4 + 20(9) + 3(02(9))$$

$$2mg(s) + O_2(g) \longrightarrow 2mgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (p151, 9th edition)

- Form: A + BC - AC + B "A" and "B" are elements., often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.

Examples:

$$Cu(s) + 2 A_g NO_3(aq) \longrightarrow (u(NO_3)_2(aq) + 2 A_g(s))$$

 $Examples:$
 $Cu(s) + 2 A_g NO_3(aq) \longrightarrow (u(NO_3)_2(aq) + 2 A_g(s))$
 $Examples:$
 $Examples:$
 $Cu(s) + 2 A_g NO_3(aq) \longrightarrow (u(NO_3)_2(aq) + 2 A_g(s))$
 $Examples:$
 $Examples:$

REDOX LANGUAGE

"oxidizer"

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.
- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.

$$2 \xrightarrow{A} (s) + 3 \xrightarrow{B} (l) \longrightarrow 2 \xrightarrow{A} (B \xrightarrow{G} (s))$$

Aluminum is OXIDIZED during this process. We say that metallic aluminum is a REDUCING AGENT!

Bromine is REDUCED during this process. We say that bromine is an OXIDIZING AGENT!

- * Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).
 - * Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS

END OF CHAPTER 4 MATERIAL