${ }^{147} 25 \overline{0} 0 \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert volume chlorine to moles chlorine using ideal gas equation.
2 - Convert moles chlorine to moles HCl using chemical equation
3 - Convert moles HCl to mass using formula weight.

$$
\begin{aligned}
& \text { (1) } P V=n R T \mid P=1.00 \text { cuts } \quad R=0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& n=\frac{P V}{R T} \quad V=2500 \mathrm{~L} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n_{\mathrm{Cl}_{2}}=\frac{(1.00 \mathrm{utm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{arm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~kJ})}=\left.102.1646983 \mathrm{~mol} \mathrm{Cl}\right|_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
102.1646983 \mathrm{~mol} \mathrm{Cl} \\
2
\end{array} \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Cl}_{2}} \times \frac{36.488 \mathrm{~g} \mathrm{HCl}}{\mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{kg}}{10_{\mathrm{g}}^{3}}=\begin{array}{c}
7.4 \mathrm{~S} \mathrm{Kg} \\
\mathrm{HCl}
\end{array}
\end{aligned}
$$

Calculate the mass of $2265_{50} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

* Volume of a 10'x10'x8'

1 - Convert 22650L of oxygen gas to moles using ideal gas room equation.
2 - Convert moles oxygen gas to mass using formula weight.

$$
\begin{aligned}
& \text { (1) } P V=n R T \\
& n=\frac{P V}{R T} \\
& V=22650 \mathrm{~L} \\
& R=0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
$$

149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?

$$
\text { We wart } M_{H G}=\frac{\operatorname{mol} H C l}{L \text { Solution }} \leftarrow 48.90 \mathrm{~mL}=0.04840 \mathrm{~L}
$$

1 - Convert volume carbon dioxide gas to moles using ideal gas equation.
2 - Convert moles carbon dioxide to moles HCl using chemical equation
3 - Calculate molarity of HCl by dividing moles hCl and volume of solution.

$$
\begin{array}{ll}
\text { (1) } n=\frac{P V}{R T} \left\lvert\, \begin{array}{ll}
P=0.950 \mathrm{~atm} & R=125.0 \mathrm{~mL}=0.1250 \mathrm{~h} \\
V & T=290.2 \mathrm{~K}
\end{array}\right. \\
n_{\left[O_{2}\right.}=\frac{(0.950 \mathrm{~atm})(0.1250 \mathrm{~h})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{at}}{\mathrm{mul} . \mathrm{K}}\right)(290.2 \mathrm{~K})} & =0.0049 .866019 \mathrm{~mol} \mathrm{co}_{2}
\end{array}
$$

(2) 2 mol $W C l=\operatorname{mol} \mathrm{CO}_{2}$

$$
\begin{aligned}
& 0.0049 .866019 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{molCO}}=0.0099732038 \mathrm{~mol} \mathrm{HCl} \\
& \mathrm{M}_{\mathrm{HCl}}=\frac{\mathrm{mol} \mathrm{HCl}}{2 \text { Solution }}=\frac{0.0099732038 \mathrm{~mol} \mathrm{HCl}}{0.04840 \mathrm{~L}}=0.204 \mathrm{MHCl}
\end{aligned}
$$

