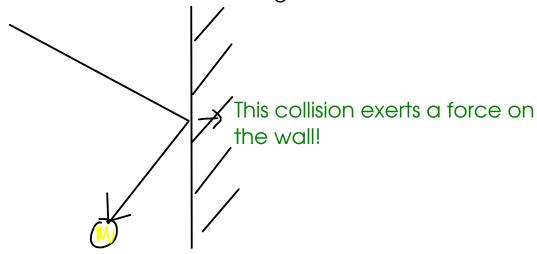

END OF CHAPTER 4 MATERIAL

- Gases differ from the other two phases of matter in many ways:
 - They have very low viscosity (resistance to flow), so they flow from one place to another very easily.
 - They will take the volume of their container. In other words, gas volumes are variable.
 - They are the least dense of all three phases.
 - Most gases are transparent, and many are invisible. thermal expansion!
 - Gases show a much larger change of volume on heating or cooling than the other phases.
 - Gases react to changes in temperature and pressure in a very similar way. This reaction often does not depend on what the gas is actually made of.


KINETIC THEORY

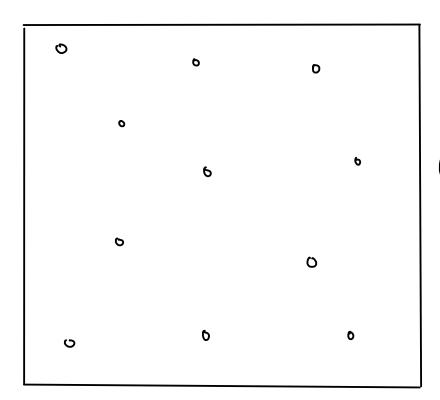
- is a way to explain the behavior of gases.
- views the properties of gases as arising from them being molecules in motion.

- Pressure: force per unit area. Units: Pascal, bar, mm Hg, in Hg, atm, etc.

- According to kinetic theory, pressure is caused by collisions of gas molecules with each other and the walls of the container the gas is in.

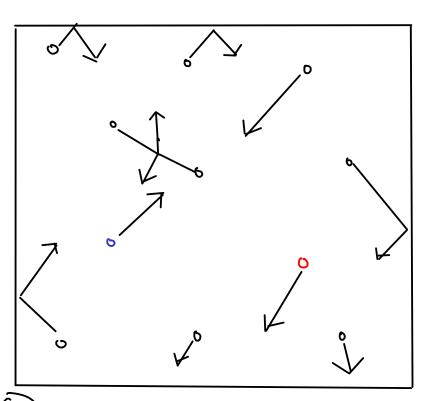
136- Temperature:

- a measure of the average kinetic energy of the molecules of the gas


$$\frac{1}{2} \frac{m}{2} \frac{v^2}{\text{velocity}}$$
mass

- The faster the gas molecules move, the higher the temperature!
- The temperature scales used when working with gases are ABSOLUTE scales.
 - ABSOLUTE: scales which have no values less than zero.

- KELVIN: metric absolute temperature scale.


		- KLI	-viiv. Theme de	solute terriperature scale
Quick comparison of temperature scales!			K=273.15+°C	
	212	100	373	Water boils
	$\gamma\gamma$	25	298	Room temperature
	32	O	273	Water freezes
	-460	-273	0	Absolute zero!
	OF	° C	K	

THE KINETIC PICTURE OF GASES

Gas molecules are small compared to the space between the gas molecules!

LOW DENSITY!

- Gas molecules are constantly in motion. They move in straight lines in random directions and with various speeds.
- Attractive and repulsive forces between gas molecules are so small that they can be neglected except in a collision.
 - Each gas molecule behaves independently of the others.
- Collisions between gas molecules and each other or the walls are ELASTIC.
- (S) The average kinetic energy of gas molecules is proportional to the absolute temperature.

How does this picture explain the properties of gases?

- Gases expanding to fill their container? Agrees with kinetic picture, since gas molecules are independent
- Thermal expansion of gas at constant pressure? Agrees, because the container has to EXPAND to keep the pressure (from collisions) constant when the gas molecules move faster.
- Pressure increases with temperature at constant volume: Agrees, because the number and force of collisions increases with molecular speed.

GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$P_1V_1 = constant$$

$$P_2V_2 = constant$$

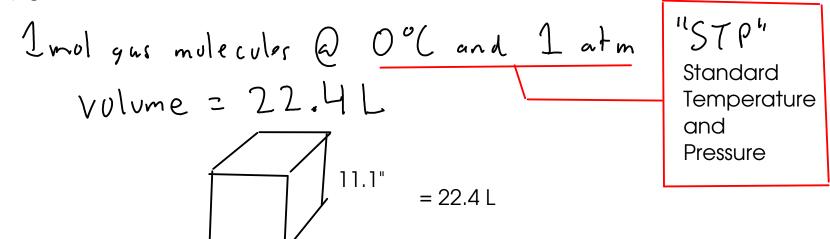
$$P_1V_1 = P_2V_2$$
True at constant temperature

Charles's Law:

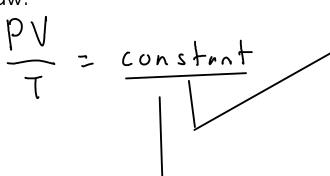
True at constant pressure, and using ABSOLUTE temperature

$$\begin{array}{c|c}
\hline
\end{array}$$

$$\begin{array}{c|c}
\hline
\end{array}$$
True at constant pressure, and using ABSOLUTE temperature using ABSOLUTE temperature


Must use ABSOLUTE temperature units!

Avogadro's law:


- amount (moles) of gas must be constant,

- a mole of any gas at the same conditions has the same volume.

11.1"

Ideal gas law:

... but this constant actually depends on the <u>amount</u> of gas!

Y ('R')

The ideal gas constant.

... combining these together ...

P = pressure atm

V = volume L

T = ABSOLUTE temperature k

R = ideal gas constant

n = number of moles of gas molecules

CHEMICAL CALCULATIONS WITH THE GAS LAWS

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?

- 1 Convert 25.0 g sodium bicarbonate to moles using FORMULA WEIGHT.
- 2 Convert moles sodium bicarbonate to moles carbon dioxide using CHEMICAL EQUATION.
- 3 Convert moles carbon dioxide to VOLUME carbon dioxide using IDEAL GAS EQUATION.