Find the EMPIRICAL (simples whole-number ratio of elements) FORMULA from the given mass data:

$$
\begin{aligned}
& 28.170 \% \mathrm{mn} \\
& 30.80 \% \mathrm{C}
\end{aligned}
$$

$$
1006 x-28.17 \%-30.80 \%=41.03 \% 0
$$

To reduce this molar ratio to a ratio of WHOLE
NUMBERS, divide each term by the SMALLEST - in this case, 0.512...

$$
\begin{aligned}
& 28.17 \mathrm{gm} \times \frac{\operatorname{mol} m_{n}}{54.94 \mathrm{gm}}=0.5127411722 \mathrm{~mol} \mathrm{~m}_{\mathrm{n}} \rightarrow 1 \mathrm{~mol} \mathrm{~m}_{\mathrm{n}} \\
& 30.80 \mathrm{gC} \times \frac{\operatorname{mol} \mathrm{C}}{12.01 \mathrm{gC}}=2.564529559 \mathrm{~mol} C \rightarrow 5.002=S_{\mathrm{mol}} \mathrm{C} \\
& 41.03 \mathrm{gO} \times \frac{\mathrm{mol} 0}{16.00 \mathrm{go}}=2.564375 \mathrm{~mol} 0 \rightarrow 5.001=5 \mathrm{mal} 0
\end{aligned}
$$

So the EMPIRICAL FORMULA is:

$$
\begin{aligned}
& \text { So the EMPIRICAL FORMULA is: MnCsOs } \\
& M_{n}: 1 \times 54.94 \\
& C: 5 \times 12.01 \\
& 0: \frac{5 \times 16.00}{194.999 / \mathrm{mol} \text { (Compare to } 366 \mathrm{~g} 1 \text { mol }}
\end{aligned}
$$

$2 \times 194.49=390$, clusest multiple to $366 \mathrm{~g} / \mathrm{mol}$ It looks like the molecular formula is twice the empirical formula: $M_{m_{2}} C_{10} O_{10}$ 56 grams of a sample contain 0.51 mole fraction propane and the remainder butane. What are the masses of propane and butane in the sample?

Know: $X_{C_{3} H_{8}}$	$=0.51$			
$X_{C_{4} H_{10}}$	$=1-0.81=0.49$	$	$	Want: \quad mass $C_{3} H_{8}$
:---				
mass $C_{4} H_{10}$				

How do we get from MOLE FRACTION to the mass of each component in the sample?

$$
\begin{aligned}
& X_{C_{3} H_{8}}=\frac{\text { mol } C_{3} H_{8}}{\text { total moles the sample solution. }} \text { Lew ... that we have a mole of } \\
& \operatorname{mol}_{3} \mathrm{H}_{8}=0 . \delta 1 \mathrm{Kl}=0 . \delta 1 \operatorname{mol} \mathrm{C}_{3} \mathrm{H}_{8} \quad \text { Now, we can convert these numbers } \\
& \text { of moles to masses using the molecular } \\
& \mathrm{mol}_{\mathrm{C}_{4} \mathrm{HiO}_{10}}=0.49 \times 1=0.49 \mathrm{~mol} \mathrm{C}_{4 \mathrm{H}} \mathrm{H}_{10} \text { weights of propane and butane! } \\
& \mathrm{C}_{3} \mathrm{H}_{8}: 4.4 .094 \mathrm{~g} / \mathrm{mol} \quad \mathrm{C}_{4} \mathrm{H}_{10}: 58.12 \mathrm{~g} / \mathrm{mol} \text { : Formula weights } \\
& 0.51 \operatorname{mol} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{44.094 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}{\mathrm{~mol} \mathrm{C}_{3} \mathrm{H}}=22.48794 \mathrm{gC}_{3} \mathrm{H}_{8} \begin{array}{l}
\text { Use the ratio of mass } \\
\text { butane:total mass an }
\end{array} \\
& \text { butane:total mass and } \\
& \text { mass propane:total mass } \\
& 0.49 \mathrm{~mol} \mathrm{CaH}_{10} \times \frac{58.12 \mathrm{gCuH10}}{\operatorname{mol} \mathrm{CHH}_{10}}=\frac{28.4788 \mathrm{gC}_{4} \mathrm{H}_{10}}{50.96674 \mathrm{~g} \mathrm{total}} \text { to } \\
& \text { to find the masses in } \\
& \text { the actual sample }
\end{aligned}
$$

87

$$
\begin{aligned}
& \mathrm{gC}_{3} \mathrm{H}_{8}: 0.81 \text { mol } \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{44.094 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}{m o l \mathrm{C}_{3} \mathrm{H}_{8}}=22.48794 \mathrm{gC}_{3} \mathrm{H}_{8} \\
& \mathrm{~g} \mathrm{C}_{4} H_{10}: 0.49 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \times \frac{58.12 \mathrm{~g} \mathrm{CH}_{10}}{\text { mol } \mathrm{C}_{4} \mathrm{H}_{10}}=\frac{28.4788 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}}{50.46674 \mathrm{~g} \mathrm{total}}
\end{aligned}
$$

For a total mass of solution of 56 g ...

$$
\begin{aligned}
& \operatorname{SGg}_{x} \times \frac{22.48794 \mathrm{gC}_{3} \mathrm{H}_{8}}{50.96674 \mathrm{~g} \text { total }}=24.7=2 \mathrm{~S}_{\mathrm{g}} \mathrm{C}_{3} \mathrm{H}_{8} \\
& \operatorname{SGg}_{x} \frac{28.4788 \mathrm{~g} \mathrm{C}_{4} H_{10}}{50.96674 \mathrm{~g} \text { total }}=31.3=3 \mathrm{lg}_{4} \mathrm{CH}_{10}
\end{aligned}
$$

So, the composition of the 56 g sample is 25 g propane, 31 g butane

Commercial sulfuric acid (98% by mass) is 18 M . What is the density of the solution, and what is the molality?

Now find the mass of solution:

$$
\begin{aligned}
1765.548 \mathrm{y} \mathrm{H}_{2} \mathrm{SO}_{4} & =0.98 \times \text { mass solution } \\
1801.579592 \mathrm{~g} & =\text { mass solution }
\end{aligned}
$$

Find
density: density $=\frac{\text { mass solution }}{\text { Volume solution }}=\frac{1801.579592 \mathrm{~g}}{1000 \mathrm{~mL}}=1.8 \mathrm{~g} / \mathrm{mL}$

$$
\text { molality }=\frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { ky } \mathrm{H}_{2} \mathrm{O}}
$$

We've already assumed IL of solution to solve the previous problem. If we keep that assumption, the we already know: moles sulfuric acid, mass sulfuric acid, and total mass of solution.

Find mass of water by subtraction:

$$
\begin{aligned}
& 1801.579592 \mathrm{~g} \text { solution }-1765.548 \mathrm{gH}_{2} \mathrm{SO}_{4}=36.031592 \mathrm{~g} \mathrm{H} \mathrm{O} \\
& \text { or, } 0.036031592 \mathrm{~kg} \mathrm{H} \mathrm{O}
\end{aligned}
$$

Find molality:

$$
\text { molality }=\frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{\mathrm{ky} \mathrm{H}_{2} \mathrm{O}}=\frac{18 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{0.036031592 \mathrm{~kg}} \mathrm{H}_{2} \mathrm{O}=50 \mathrm{~m} \mathrm{H} \mathrm{H}_{2}
$$

