The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

$$
\begin{gathered}
k m=10^{3} \mathrm{~m}(1000 \mathrm{~m}) \\
107 \mathrm{hm}
\end{gathered}
$$

By "best suited", we mean a metric unit that would represent the number without many beginning or end zeros. These kinds of numbers are easier for us to remember!

A piece of chalk is 0.080 meters long. What metric unit would be best suited for this length?

$$
\begin{aligned}
& 8.0 \mathrm{~cm} \\
& \begin{array}{c}
\text { dor fortis length? } \\
\left(m=10^{-2} \mathrm{~m}\right.
\end{array}\left(\frac{1}{100} \mathrm{~m}\right)
\end{aligned}
$$

- are units that are made up of combinations of metric base units with each other and/or with prefixes
velocity: $\frac{\text { miles }}{h_{r}} \frac{k m}{h r} \quad\left(\frac{m}{s}\right) \quad \frac{\text { length }}{\text { fime }}$
Two derived units are particularly important in general chemistry:

1) VOLUME
2) DENSITY

VOLUME

$$
\text { VOLUME }=L \times W \times H
$$

What are the units of volume in the metric system?

$$
\begin{aligned}
\text { VOLUME } & =\left(m_{1}\right) \times(m) \times(m) \\
& =m^{3} \text { (cubic meters) }
\end{aligned}
$$

CUBIC METERS are a large unit. They're too large for typical lab-scale work. We need to scale the volume unit down for everyday work.

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

A smaller unit For volume?
cubic decimeters! dm^{3}

$$
(\text { decimeter }=1 / 10 \text { meter })
$$

Cubic decimeters are given the name "liters", abbreviation "L"
In the lab, we typically need an even smaller unit than the liter, so we use millililiters (mL)

"cc"
cubic centimeter
$=$
milliliter

$$
\begin{aligned}
& 1 m L=10^{-3} L \\
& - \text { or } \\
& 1000 m L=1 L
\end{aligned}
$$

DENSITY

- Density is a measure of the concentration of matter; of how much matter is present in a given space
- Density is defined as the MASS per unit VOLUME, or ...

$$
\begin{aligned}
& \text { Density }=\frac{\text { mass }}{\text { Volume }} \\
& \text { What are the metric units of DENSITY? } \\
& \text { Density }=\frac{\text { Base unit of mass is the kilogram }}{m^{3} \approx \begin{array}{l}
\text { simplest volume unit is the } \\
\text { cubic meter }
\end{array}}
\end{aligned}
$$

... but we don't typically measure volumes in cubic meters in the lab. We also don't measure masses is kilograms. (A typical laboratory analytical balance has a maximum capacity of about 200 g)

In the lab, we typically measure masses as grams and volumes as milliliters, so the density unit we will use most often is:

$$
\frac{g}{m L} \quad\left(\frac{g}{c^{3}}\right)\left(\frac{g}{c c}\right)
$$

A useful density to remember: WATER at room temp: Density $=1 \mathrm{~g} / \mathrm{mL}$
... of a liquid

4) Subtract to find mass of liquid

$$
\begin{array}{r}
130.559 \\
-\quad 97.359 \\
\hline 33.209
\end{array}
$$

2) Fill cylinder and measure volume of liquid
volume $=25.3 \mathrm{~mL}$
3) Measure mass of filled cylinder

$$
\operatorname{mass}=130.55 \mathrm{~g}
$$

5) Density = mass liquid / volume liquid

$$
\begin{aligned}
\text { Density } & =\frac{33.20 \mathrm{~g}}{25.3 \mathrm{~mL}} \\
& =1.31 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

11 ...of an object

1) Measure mass of object

$$
\text { mass }=9.78 \mathrm{~g}
$$

2) Partially fill cylinder with liquid, record volume.

$$
\text { volume }=25.0 \mathrm{~mL}
$$

3) Put object into cylinder, record new volume
volume $=26.6 \mathrm{~mL}$
4) Subtract to find volume of object

$$
\begin{array}{r}
26.6 \mathrm{~mL} \\
-25.0 \mathrm{~mL} \\
\hline 1.6 \mathrm{~mL}
\end{array}
$$

5) Density = mass object / volume object

$$
\begin{aligned}
\text { Density } & =\frac{9.78 \mathrm{~g}}{1.6 \mathrm{~mL}} \\
& =6.1 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

We will use the method of dimensional analysis, sometimes called the factor-label method. ... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.
Example

$$
12 \mathrm{in}=1 \mathrm{ft}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\text { For example, "K, } 100^{-" ~ m e a n s ~} 10^{3}
$$

How do we actually USE a conversion factor?

* Similar to... If $X=2$, then $\frac{x}{2}=1$

1S.7S/EE-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

DRAG AND DROP you want to cancel out to the ByTOM.

- Then, drag the other half of the factor to the TOP

Convert 14500 mg to $\mathrm{kg} \quad \mathrm{mg}=10^{-3} \mathrm{~g} \quad$ IV $\mathrm{g}=10^{3} 9$

$$
14500 \mathrm{mg} \times \frac{10^{-3} g}{m g} \times \frac{1 \mathrm{~g} g}{10^{3} \mathrm{~g}}=0.0145 \mathrm{trg}
$$

Convert $0.147 \mathrm{~cm}^{2}$ to $\mathrm{m}^{2} \quad \mathrm{Cm}=10^{-2} \mathrm{~m}$

$$
0.147 \operatorname{csm}^{2} \times \frac{10^{-2} m}{c \cos } \times \frac{10^{-2} \mathrm{~m}}{\mathrm{cy}}=1.47 \times 10^{-5} \mathrm{~m}^{2}
$$

... so for squared units, we have to convert BOTH PARTS of the unit. Use the conversion factor twice. Think of a square centimeter as being

$$
\mathrm{Cm} \times \mathrm{cm}
$$

... and it'll make sense. For CUBED units, apply each factor three times!

