${ }^{144}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles using formula weight.
2 - Convert moles sodium carbonate to moles hydrochloric acid using chemical equation.
3 - Convert moles hydrochloric acid to volume using concentration ($6.00 \mathrm{~mol} / \mathrm{L}$)

$$
\begin{aligned}
& \mathrm{NaCO}_{2}: \mathrm{Na}: 2 \times 22.99 \\
& \mathrm{C}: 1 \times 12.01 \\
& \mathrm{O}: \frac{3 \times 16.00}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(1) $25.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{NaCO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3}$

$$
2 \operatorname{molHCl}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

(2) $0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{molNa}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}$

145 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles using formula weight.
2 - Convert moles sodium carbonate to moles hydrochloric acid using chemical equation.
3 - Convert moles hydrochloric acid to volume using concentration ($6.00 \mathrm{~mol} / \mathrm{L}$)

$$
6.00 \mathrm{molHCl}=\mathrm{L} \quad m \mathrm{~L}=10^{-3} \mathrm{~L}
$$

(3) $0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=\begin{aligned} & 78.6 \mathrm{~mL} \mathrm{of} \\ & 6.00 \mathrm{M} \mathrm{HCl}\end{aligned}$

You can solve the problem on one line if you want:
$105.99 \mathrm{~g} \mathrm{araco}_{3}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3} 2 \mathrm{~mol} \mathrm{HCl}=\mathrm{mol} \mathrm{Na} \mathrm{Na}_{2}$
$6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L} \quad m L=10^{-3} \mathrm{~L}$

$$
\begin{align*}
& 25.0 \mathrm{yNa}_{2} \mathrm{CO}_{3} \times \frac{\frac{\mathrm{mol} \mathrm{Na} \mathrm{CO}_{3}}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \underbrace{\frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}}_{(1)} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}}{(2)}= \tag{2}\\
& \text { (1) }
\end{align*}
$$

${ }^{146}$ EXAMPLE PROBLEM:

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

1 - Convert 2545 g of chlorine gas to moles. Use formula weight of chlorine gas.
2 - Convert moles chlorine gas to moles sodium using chemical equation.
3 - Convert moles sodium to mass sodium using formula weight of sodium.

$$
\begin{aligned}
& \text { (1) } \mathrm{Cl}_{2}: 2 \times 35.45=70.90 \mathrm{gCl}=\mathrm{molil} l_{2} \\
& \text { (2) } 2 \operatorname{mol} \mathrm{Na}=\operatorname{mol} \mathrm{Cl}_{2} \\
& \text { (3) } \mathrm{Na}: 22,99 \mathrm{~g} \mathrm{a}=\mathrm{mol} \mathrm{Na}
\end{aligned}
$$

