
$\left.2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2} \mathrm{Cg}\right)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=$? $\quad \stackrel{\text { From }}{\mathrm{A}-\mathrm{y},}$
Hess' Law: If you add two reactions to get a new reaction, their enthalpies also add. k

162 Hess' Law using enthalpy of formation:

$$
\begin{aligned}
\Delta H & =\sum \Delta H_{f, \text { praters }}^{\text {ion }}-\sum \Delta H_{f_{1} \text { reactants }} \\
\Delta H & =(4(-393.5)+2(-241.8))-(2(226,7)+S(0)) \\
& =-2511 \mathrm{hJ}
\end{aligned}
$$

See Appendix C in the textbook for enthalpy of formation data: p A-8 to A-1 1

* Remember:
- Multiply each enthalpy by its stoichiometric coefficient from the reaction
- Enthalpy of formation of an element at its standard state is zero
- Watch phase labels. You will usually find SEVERAL enthalpies of formation for a given substance in different phases!
- For ionic substances in solution, remember that they exist as free ions, so look up the aqueous IONS!
${ }_{163}$ Example problems:
FORMULA WEIGHTS in g/mol

$$
2 \mathrm{H}_{2}^{2.016}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}^{18.02} \longrightarrow \begin{gathered}
\text { in purple } \\
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta \mathrm{H}=-484 \mathrm{~kJ}
\end{gathered}
$$

Calculate the enthalpy change for the combustion of 1.00 kg of hydrogen gas.
1 - Convert 1.00 kg of hydrogen gas to moles using formula weight.
2 - Convert moles hydrogen gas to enthalpy change using thermochemical equation.

$$
\begin{aligned}
& 2.016 \mathrm{~g} \mathrm{H}=\mathrm{mol}_{2} \mathrm{H} 2\left|\mathrm{Kg}=10^{3} \mathrm{~g}\right| 2 \mathrm{~mol} \mathrm{H}_{2}=-484 \mathrm{~kJ} \\
& 1.00 \mathrm{Wg} \mathrm{H} 2 \times \frac{10^{3} \mathrm{~g}}{\mathrm{Kg}} \times \frac{\mathrm{mol} \mathrm{H}_{2}}{2.0 \mathrm{Hg} \mathrm{H}} \times \frac{-484 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{H}_{2}}=\begin{array}{c}
-12 \overline{0} 000 \mathrm{~kJ} \\
\text { per } \mathrm{Hg} \mathrm{H}
\end{array}
\end{aligned}
$$

164

$$
\begin{array}{ll}
\text { FW: 46.026 } \\
2 \mathrm{HCHO}(l)
\end{array}{ }^{32.00} \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{O})
$$

If 50.3 kJ of heat was released when 5.48 g of formic acid are burned at constant pressure, then what is the enthalpy change of this reaction per mole of formic acid?

$$
Q=-S 0.3 \mathrm{~kJ} ; \Delta H=\frac{Q_{\text {constant pressure }}}{\text { mol } \mathrm{HCHO}_{2}}
$$

Find moles formic acid:

$$
\begin{aligned}
& 5.48 \mathrm{~g} \mathrm{HCHO}_{2} \times \frac{\mathrm{mal} \mathrm{HCHO}}{4.026 \mathrm{gHCHO}_{3}}=0.1190631383 \mathrm{~mol} \mathrm{HCHO} \\
& \Delta H=\frac{-50.3 \mathrm{~kJ}}{0.1190631383 \mathrm{~mol} \mathrm{HCHO}} 2 \\
& =-4221 \mathrm{JJ} / \mathrm{mol} \mathrm{HCHO}_{2}
\end{aligned}
$$

Based on the calculation above, can we complete this thermochemical equation?

$$
2 \mathrm{HCHO}(l)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) ; \Delta H=-844 \mathrm{KJ}
$$

We calculated the enthalpy change PER MOLE of formic acid. This equation is based on TWO MOLES of formic acid. So, we double the enthalpy change above for two moles.
${ }^{165} \quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=-906 \mathrm{~kJ}$
What is the enthalpy change when 150 . L of nitrogen monoxide are formed by this reaction at 25.0 C and 1.50 atm pressure?

1 - Convert 150 L of NO to moles using ideal gas equation.
2 - Convert moles of NO to enthalpy change using thermochemical equation.

$$
\begin{array}{r|ll}
\hline P=\frac{n R T}{R T} & P=1.80 \mathrm{~atm} & R=0.0820 G \frac{\mathrm{Lartm}}{\mathrm{moloh}} \\
n=150 . \mathrm{L} & T=25.5^{\circ} \mathrm{C}=2.98 .2 \mathrm{k}
\end{array}
$$

(1) $n_{N_{0}}=\frac{(1.80 \mathrm{arm})(150 . \mathrm{L})}{\left(0.08206 \frac{\mathrm{L-a+L}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(2.98 .2 \mathrm{k})}=9.194822849 \mathrm{~mol} \mathrm{No}$

$$
\begin{aligned}
& 44_{\mathrm{mol}} 1 \mathrm{NO}=-906 \mathrm{~kJ} \\
& 9.194822849 \mathrm{~mol} \mathrm{NO} \times \frac{-906 \mathrm{~kJ}}{4_{\mathrm{mol}} 1 \mathrm{NO}}=-2080 \mathrm{WJ}
\end{aligned}
$$

${ }^{160} 34.086 \mathrm{~g} / \mathrm{mol} \quad$ Heat of formation / enthalpy of formation!

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta H_{f}^{0} \text {, rJJ/mol }
$$

What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted?
1- Calculate the enthalpy change for the reaction as written using HEATS OF FORMATION.
2 - Convert 25.0 grams of hydrogen sulfide to moles using formula weight.
3 - Convert moles hydrogen sulfide to enthalpy change using thermochemical equation.
$\Delta H=\sum \Delta H_{f i p r o d u c t s}^{0}-\sum \Delta H_{i}^{\circ}$, reactants
(1) $=[2(-285.8)+2(-296.8)]-[2(-20.50)+3(0)]=-1124.2 \mathrm{hJ}$

Thermochemical equation:

$$
\begin{align*}
& \left.\frac{2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-1124.2 \mathrm{~kJ}}{34.086 \mathrm{~g} \mathrm{H}}=2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S} \right\rvert\, 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}=-1124 \mathrm{hJ} \\
& 25.0 \mathrm{~g} \mathrm{H} \mathrm{H} \times \frac{\mathrm{molh}_{2} \mathrm{~S}}{34.086 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}} \times \frac{-1124 \mathrm{hJ}}{2 \mathrm{molH}_{2} \mathrm{~S}}=-412 \mathrm{~kJ} \\
& 2 \tag{2}
\end{align*}
$$

