PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\mathrm{NH}_{4}{ }^{+} \quad \mathrm{NO}_{3}^{-}
$$

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3}: \mathrm{N}: 2 \times 14.01=28.02 \\
& H: 4 \times 1.008=4.032 \\
& 0: 3 \times 16.00=\frac{48.00}{80.052} \mathrm{~g} \mathrm{HH}_{4} \mathrm{NO}_{3}=\text { mol } \mathrm{NH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \% N=\frac{28.02 \mathrm{~g} \mathrm{~N}}{80.052 \mathrm{~g} \mathrm{NH} \mathrm{HNO}_{3}} \times 100 \%=35.00 \% \mathrm{~N} \\
& \% H=\frac{4.032 \mathrm{~g} \mathrm{H}}{80.052 \mathrm{~g} \mathrm{NH} H_{4}} \times 100 \%=5.04 \% \mathrm{H} \\
& \% \mathrm{O}=\frac{48.00 \mathrm{gO}}{80.052 \mathrm{~g} \mathrm{NH} \mathrm{gNO}_{3}} \times 100 \%=59.96 \% \mathrm{O}
\end{aligned}
$$

These percentages SHOULD sum to 100%, but you may see some roundoff error depending on which decimal place you round.

So far, we have
ch $8\left[\begin{array}{l}\text { - looked at how to determine the composition by mass of a compound } \\ \text { from a formula } \\ \text { - converted from MASS to MOLES (related to the number of atoms/molecules) } \\ \text { - converted from MOLES to MASS }\end{array}\right.$

Are we missing anything?
Sec - What about SOLUTIONS, where the desired chemical is not PURE, but 15.4 found DISSOLVED IN WATER?
p 483 -- How do we deal with finding the moles of a desired chemical when it's in 488 solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
\begin{aligned}
& M=\text { MOLARITY } \\
&=\frac{\text { moles of solute }}{\text { Lsolution }} \\
& 6 . O M \mathrm{MCl} \text { solution: }: \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{aligned}
$$

There are 6.0 moles of hydrochloric acid in each liter of this solution, so you can write this relationship another way:

$$
6.0 \mathrm{~mol} \mathrm{HCl}=1 \mathrm{~L}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?
$G .0 \mathrm{~mol} H C l=L$

$$
0.250 \mathrm{~L} \times \frac{G .0 \mathrm{~mol} \mathrm{HCl}}{L}=1.5 \mathrm{~mol} \mathrm{HCl}
$$

If you need 0.657 moles of hydrochloric acid, how many milliliters of 0.0555 M HCl do you need to measure out?

$$
0.0 \text { SSS mol } \mathrm{HCl}=\mathrm{L} \quad m L=10^{-3} \mathrm{~L}
$$

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{~mol} \mathrm{HCl}} \times \frac{m \mathrm{~L}}{10^{-3} \mathrm{~L}}=\frac{11800 \mathrm{~mL} \text { of } 0.055 S \mathrm{MHCl}}{\text { This is an extremely large volume for }}
$$ lab-scale work. We should use a MORE CONCENTRATED acid solution for this situation.

What if we used 6.00 M HCl ?

$$
\begin{aligned}
& 6.00 \mathrm{~mol} \mathrm{HCl}=L \mathrm{~mL}=10^{-3} \mathrm{~L} \\
& 0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{m \mathrm{~L}}{10^{-3} \mathrm{~L}}=110 . \mathrm{mL} \text { of } 6.00 \mathrm{~m} \mathrm{HCl}
\end{aligned}
$$

This volume is more reasonable. We can easily measure out this amount of acid with a 250 mL graduated cylinder.

If you're preparing a solution by dissolving a solid in water, you can easily calculate the molarity of the solution. How?
Just find the number of moles of solid you dissolved, then divide by the volume of the solution (expressed in liters!)

What is the molarity of a solution made by dissolving 3.50 g of NaCl in enough water to make 250. mL of solution?

$$
M=\frac{\operatorname{mol~} \mathrm{Na}(\}}{L \text { solution }}
$$

1 - Convert 3.50 grams of NaCl to moles using the formula weight.
2 - Divide moles $\mathrm{NaCl} /$ LITERS of solution. (Convert 250 mL to L)

$$
\begin{aligned}
& \text { NaCa: Na: } 1 \times 22.99 \\
& \text { Cf: } \frac{1 \times 35.45}{58.44 \mathrm{NaCl}}=\operatorname{mol~} \mathrm{NaCl} \\
& \text { (1) } 3.50 \mathrm{~g} \mathrm{NaCl} \times \frac{\text { mol } \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}=0.059890486 \mathrm{~mol} \mathrm{NaCl} \\
& m L=10^{-3} L \\
& 250 . m L \times \frac{10^{-3} L}{m L}=0.250 \mathrm{~L} \\
& 3.50 \mathrm{~g} \mathrm{NaCl} \boldsymbol{\sim} \text { to prepare } \\
& \text { lab } \\
& \text { (2) } \mathrm{Na}=\frac{\mathrm{mol} \mathrm{NaCl}}{\mathrm{~L} \text { solution }}=\frac{0.059890486 \mathrm{~mol} \mathrm{NaCl}}{0.250 \mathrm{~L}}=0.240 \mathrm{MNaCl}
\end{aligned}
$$

${ }^{139}$ A few more examples...
$幺 \quad$ Use FORMULA WEIGHT when relating mass and moles \downarrow
You have a 250 g bottle of silver (I) chloride (AgCl). How many moles of AgCl do you have?

$$
\begin{aligned}
& \mathrm{AgCl}: \mathrm{Ag} 1 \times 107.4 \\
& C 1 \frac{1 \times 35.45}{143.35 \mathrm{~g} \mathrm{AgCl}}=\operatorname{mol} \mathrm{AgCl} \\
& \text { 250.g } \mathrm{AgCl} \times \frac{\mathrm{mol} \mathrm{AgCl}}{143.3 \mathrm{Sg} \mathrm{AgCl}}=1.74 \mathrm{~mol} \mathrm{AgCl}
\end{aligned}
$$

How many moles of NaOH are present in 155 mL of 1.50 M NaOH ?
When relating moles and VOLUME, we need to use CONCENTRATION (usually MOLARITY - M)

$$
\begin{aligned}
& 1.50 \mathrm{~mol} \mathrm{NuOH}=\mathrm{L} \quad \mathrm{~mL}=10^{-3} \mathrm{~L} \\
& 155 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{\mathrm{mh}} \times \frac{1.50 \mathrm{~mol} \mathrm{NuOH}}{\mathrm{~L}}=0.233 \mathrm{mul} \mathrm{NaOH}
\end{aligned}
$$

End of material for test 3

Test \#3 Covers 6, 7, and 8 (and section 15.4)

