
- provides an easy-to-understand MECHANISM for certain kinds of chemical reactions.
 - "Exchange" reactions. (a.k.a "double replacement" reactions)

Looking a bit more closely...

(The net ionic equation shows only ions and substances that change during the course of the reaction!)

- The net ionic equation tells us that any source of aqueous silver and chloride ions will exhibit this same chemistry, not just silver nitrate and sodium chloride!

- molecular equations: Represent all substances (even ionic substances) as if they were molecules. Include spectator ions, and do not show charges on ions. Traditional chemical equations.
- ionic equations: Show all free ions including spectators in a chemical reaction. Molecules and WEAK electrolytes are shown as molecules. STRONG electrolytes (like HCl) are shown as ions. Ions that are part of <u>undissolved ionic compounds</u> are shown as molecules.
- NET ionic equation: An ionic equation that leaves out spectator ions. Intended to show only things that actually change in a reaction.

Ag NO₃ (aq) + NaCl (aq)
$$\rightarrow$$
 Ag(l(s) + NaNo₃ (aq)

Ag (aq) + No₃ (aq) + Na^t (aq) + Cl (aq) \rightarrow Ag(l(s) + Na^t (aq) + No₃ (aq)

Ag (aq) + Cl (aq) \rightarrow Ag(l(s)

* You can get from the complete ionic equation to the net ionic equation by crossing out the spectator ions on both sides.

How can I tell if an ionic compound dissolves in water?

consult experimental data: "solubility rules"!

A few of the "rules"...

- Compounds that contain a Group IA cation (or ammonium) are soluble
- Nitrates and acetates are soluble
- Carbonates, phosphates, and hydroxides tend to be insoluble

... or see the web site for a solubility chart.

#8 - hydroxides generally insoluble, except Group IA, ammonium, calcium strontium, barium

Conclusion: iron(III) hydroxide is insoluble.

#2 - acetates are soluble, no common exceptions.

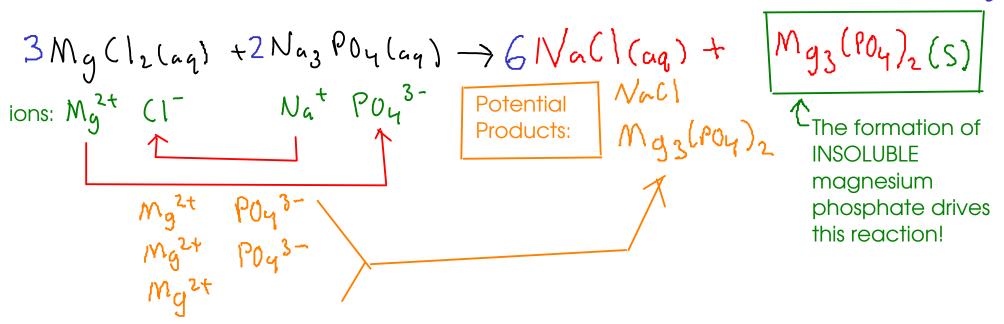
Conclusion: calcium acetate is soluble.

AgI

#3 - lodides usually dissolve, exceptions are silver, mercury, lead

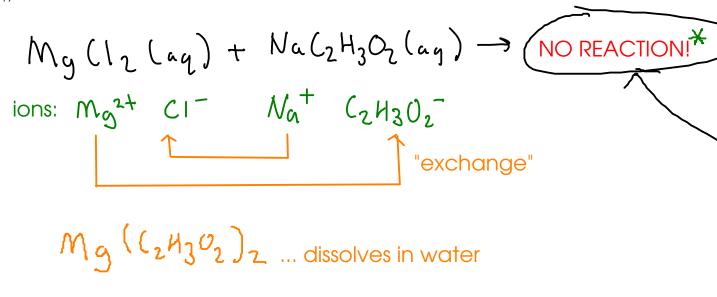
Conclusion: silver(I) iodide is INSOLUBLE

- Three kinds of exchange chemistry.


- (1) PRECIPITATION (solid product, insoluble ionic compound)
- 2 ACID/BASE OR NEUTRALIZATION (H20 is product)
- GAS FORMATION (formation of unstable molecules)

 SOME (but not all) reactions that form gases
 are examples of exchange chemistry.

Just because you mix together two ionic compounds does NOT mean that a reaction will occur. You need a DRIVING FORCE for a reaction.


PRECIPITATION REACTIONS

- driving force is the formation of an insoluble ionic compound.

When you're trying to complete a precipitation reaction:

- Write the IONS that form when the reactants are dissolved.
- Make NEW compounds by pairing up cations with anions. Don't forget that the positive and negative charges must balance each other out!
- (3) Use the solubility rules to determine the PHASE of each new compound solid or aqueous.
- (4) Balance the overall equation. Do not change subscripts.

 \mathcal{N}_{α} C | ... dissolves in water

So, no solid forms here. All possible combinations of these four ions result in compounds that dissolve readily in water.

$$m_{g}^{2+}Cl^{-}$$
 + $N_{G}^{4+}C_{1}^{3}O_{2}^{-}$ $N_{G}^{2+}Cl^{-}$ + $N_{G}^{4+}C_{1}^{3}O_{2}^{-}$ NO CHANGE, therefore NO DRIVING FORCE, and NO REACTION

★ We will learn about other driving forces than the formation of solid, but these driving forces do not apply to this reaction

ACID/BASE REACTIONS (also called NEUTRALIZATION REACTIONS)

- There are several stable molecules that may be formed in double replacement reactions, but the most common is WATER!
- Double replacement reactions that form water are also called "neutralizations"

HA + BOH
$$\rightarrow$$
 H₂O + BA acid base salt "HOH" ionic compound

* To make water (H_2O), you need a source of hydrogen ion (H^4) and hydroxide ion (OH^5)

$$H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(\ell)$$
This is the NET IONIC EQUATION for many neutralizations

... assumes you're reacting STRONG acid with STRONG base!

ACIDS

- compounds that release hydrogen ion (H), when dissolved in water.

Properties of acids:

- Corrosive: React with most metals to give off hydrogen gas
- Cause chemical burns on contact
- Taste sour (like citrus citric acid!)
- Changes litmus indicator to RED

BASES

- Substances that release hydroxide ion (OH*) when dissolved in water

Properties of bases:

- Caustic: Attack and dissolve organic matter (think lye, which is NaOH)
- Cause skin/eye damage on contact
- Taste bitter
- changes litmus indicator to BLUE

Due to the dissolving action of base on your skin, bases will feel "slippery". The base ITSELF is not particularly slippery, but what's left of your skin IS!

ACID/BASE or NEUTRALIZATION reactions continued

- the driving force of these reactions is the formation of water molecules.

$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(Q)$$
 Net ionic equation
From the acid From the base

H2S0y(ay) +2NaOH(ay)
$$\longrightarrow$$
 Na2S0y(ay)+2H2O(l)

ions: H+ S0y \longrightarrow Na+ OH-
products: Na2S0y

- How can this reaction be detected?
 - pH detector (indicator paper, etc.)
 - do the products have similar chemical properties to the reactants?
 - release of heat!

... formation of water is usually accompanied by a release of heat