PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\begin{aligned}
& \begin{aligned}
\mathrm{NH}_{4} \mathrm{NO}_{3}: \mathrm{N}: 2 \times 14.01 & =28.02 \mathrm{H} \\
\mathrm{H}: 4 \times 1.008 & =4.032 \text { These numbers are the masses of each }^{\text {element in a mole of the compound! }} \text {. }
\end{aligned} \\
& \text { H: } 4 \times 1.008=4,032 \longleftarrow \text { element in a mole of the compound! } \\
& 0: 3 \times 16.00=\frac{48.00}{80.052} \mathrm{gNH}_{4} \mathrm{NO}_{z}=1 \text { mol } \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \% \mathrm{~N}: \frac{28.02 \mathrm{gN}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=35.0 \% \mathrm{~N} \\
& \% H: \frac{4.032 \mathrm{gh}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=5.0 \% H \\
& \% 0: \frac{48.00 \mathrm{~g} 0}{80.052 \mathrm{~g} \text { total }} \times 100 \%=60.0 \% 0 \\
& \text { These should sum } \\
& \text { to approximately } \\
& \text { 100\% (within } \\
& \text { roundoff error) }
\end{aligned}
$$

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution <dissolved substance

$$
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { LSOLUTION }}
$$

6.0 M HCl solution: $\frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have? $6.0 \mathrm{~mol} H C\}=L$

$$
0.250 L \times \frac{6.0 \mathrm{~mol} H C l}{L}=1 . \mathrm{S}_{\mathrm{mol}} \mathrm{HCl}
$$

* See SECTIONS 4.7-4.10 for more information about MOLARITY and solution calculations (p 154-162)

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
0.0 S S 5 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{~mol} \mathrm{HCl}}=\frac{\boxed{11.8 \mathrm{~L}}}{13800 \mathrm{~mL}}
$$

This is too large a volume for typical lab-scale work. So, we should pick a more concentrated solution.

What if we used 6.00 M HCl ?
$6.00 \mathrm{~mol} \mathrm{HCl}=L$

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{110 \mathrm{~mL}}
$$

110 mL is a reasonable lab volume. (Can be measured with 250 mL cylinder)

Example: How would we prepare $500 . \mathrm{mL}$ of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500. mL of solution.

volumetric flask
We want 0.500 M solution. We know the VOLUME we need to prepare, so we can use that volume and the desired concentration to find out how many MOLES of sodium sulfate we need. Then, we convert the moles sodium sulfate to mass using the formula weight.

$$
\begin{aligned}
& 0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{L} \mid m L=10^{-3} \mathrm{~L} \quad 142.0 \mathrm{~S} \mathrm{Na}_{2} \mathrm{So}_{4}=\mathrm{mol} \mathrm{NNa}_{2} \mathrm{SO}_{4} \\
& 500 . \mathrm{mL} \times \frac{10^{-3} \mathrm{~L}}{\mathrm{~mL}^{2}} \times \frac{0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{L} \times \frac{142.0 \mathrm{~S} \mathrm{Na}_{2} \mathrm{So}_{4}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=3 \mathrm{~S}_{. \mathrm{Sg}_{\mathrm{g}} \mathrm{Na}_{2} \mathrm{SO}_{4}}
\end{aligned}
$$

Put 35.5 g of sodium sulfate into an empty 500 mL volumetric flask, then fill the flask to the measuring line with distilled or deionized water.

To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
(2 "stock solution"
2. Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times \backslash
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)
$M_{1} V_{1}=$
$\begin{aligned} & \text { before } \\ & \text { diution }\end{aligned}$
$\begin{aligned} & \text { after } \\ & \text { dilution }\end{aligned}$

97

$$
M_{1} V_{1}=M_{2} V_{2} \ldots \text { the "DILUTION EQUATION" }
$$

M_{1} = molarity of concentrated solution
$V_{1}=$ volume of concentrated solution
M_{2} = molarity of dilute solution
$V_{2}=$ volume of dilute solution 5 tutrl volume, not volume of added solvent.
The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{aligned}
m_{1}=0.500 \mathrm{~m} & m_{2}=0.333 \mathrm{~m} \\
V_{1}=? & V_{2}=150 . \mathrm{mL} \quad M_{1}=m_{2} V_{2} \\
(0.500 \mathrm{~m}) V_{1} & =(0.333 \mathrm{~m})(150 . \mathrm{mL}) \\
V_{1} & =99.9 \mathrm{~mL}
\end{aligned}
$$

So, to make the 0.333 M solution, we take 99.9 mL of 0.500 M sodium sulfate, and add enough water to it to make 150 mL of solution. (Ideally, use a 150 mL volumetric flask...)

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{}=3 \text { molecules } B_{r_{2}}=2 \text { formulaunits } A \mid B_{r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{aligned}
& \text { invert grams of bromine to moles: Need formula weight } B r_{2}=\frac{2 \times 79.90}{159.80} \\
& 159.80 \mathrm{~g} r_{2}=1 \text { mol } B r_{2}
\end{aligned}
$$

$$
25.0 \mathrm{~g} B r_{2} \times \frac{1 \mathrm{~mol} B r_{2}}{159.80 \mathrm{~g}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum $2 \mathrm{~mol} A 1=3 \mathrm{~mol} B_{r_{2}}$

$$
0.15645 \mathrm{~mol} B_{2} \times \frac{2 \mathrm{~mol} A_{1}}{3 \mathrm{~mol} \mathrm{Br}}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=1 \mathrm{~mol} \mathrm{Al} \\
& 0.1043 \mathrm{~mol} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!

$$
\begin{equation*}
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.80 \mathrm{~g} \mathrm{r}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \tag{1}
\end{equation*}
$$

You can solve the second part of the question using CONSERVATION OF MASS - since there's only a single product and you already know the mass of all reactants.

$$
\begin{aligned}
& 25.0 \text { y } \mathrm{Br}_{2} \quad \text { But... } \\
& +2.81 \mathrm{~g} \text { Ar } \quad \begin{array}{l}
\text { But.... } \\
+ \text {...hat would you have done to calculate the mass of aluminum }
\end{array} \\
& \text { bromide IF you had NOT been asked to calculate the mass of } \\
& \text { aluminum FIRST? } \\
& 25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \text { mol } \mathrm{Br}_{2}}{159.80 \mathrm{Br}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{AlBr}_{3}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{266.694 \mathrm{gAl} \mathrm{Br}_{3}}{1 \mathrm{~mol} \mathrm{Al} \mathrm{Br}_{3}}=27.8 \mathrm{~g}
\end{aligned}
$$

