

We will use the method of dimensional analysis, sometimes called the factor-label method.... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.

$$
\begin{aligned}
& \text { Example } \\
& 12 \mathrm{in}=1 \mathrm{ft}
\end{aligned}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\begin{aligned}
& \text { For example, "kilo." means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \begin{array}{l}
K_{m}=10^{3} \mathrm{~m} \\
K L=10^{3} \mathrm{~L} \\
K g=10^{3} \mathrm{~g} \\
K s=10^{3} \mathrm{~s}
\end{array} \\
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

How do we actually USE a conversion factor?

18
Convert 14500 mg to $\mathrm{kg} \quad \mathrm{mg}=10^{-3} \mathrm{~g} \quad \mathrm{~kg}=10_{\mathrm{g}}^{3}$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.0145 \mathrm{mg}
$$

If you have TWO prefixes
in your problem, you will apply
TWO conversion factors in your solution!

$$
\text { Convert } 0.147 \mathrm{~mm} \text { to } \underset{\sim-\text { micro- }}{\mu \mathrm{m}} \quad m m=10^{-3} \mathrm{~m} \quad \mu m=10^{-6} \mathrm{~m}
$$

$$
0.147 \mathrm{~m} / \mathrm{m} \times \frac{10^{-3} \mathrm{~m}}{\mathrm{~m} \mathrm{~m}} \times \frac{\mu \mathrm{m}}{10^{-6} \mathrm{n}}=147 \mathrm{~mm}
$$

${ }^{19}$ Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1$ in

$$
\begin{aligned}
& 2.54 \mathrm{~cm}=1 \mathrm{ir} \quad \mathrm{~cm}=10^{-2} \mathrm{~m} \\
& 38.47 \mathrm{in} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=0.9771 \mathrm{~m}
\end{aligned}
$$

Even though English units are involved, we can solve this problem the same way we solved the previous problem where only metric units were used!
${ }^{20}$ Even if you're unfamiliar with the metric units involved in a problem, you can still do conversions easily.

$$
\begin{aligned}
& 88100 \mathrm{kHz} \text { to } \mathrm{MHz} \quad K H_{z}=10^{3} \mathrm{~Hz} \quad M H_{z}=10^{6} \mathrm{~Hz} \quad H z=\frac{1}{\mathrm{~S}} \text { (Frequency) }
\end{aligned}
$$

$$
\begin{aligned}
& 0.004184 \mathrm{kJtoJ} \quad K J=10^{3} \mathrm{~J} \quad J=J \text { role (energy) } \\
& 0.004184 \mathrm{~kJ} \times \frac{10^{3} \mathrm{~J}}{K J}=4.184 \mathrm{~J}
\end{aligned}
$$

Practical applications of dimensional analysis: Drug calculations.
Example: A patient is ordered 40 mg of codeine phosphate by subcutaneous injection. 50 mg in 1 mL liquid is available. How much of this liquid should be adminstered?

This is a conversion factor. It equates the mass of drug to the volume of the solution containing the drug. We use it the same way that we use any other conversion factor.

Hint: Many statements that give conversion factors connect the numbers with "per" or "in" or a similar word.

$$
\begin{aligned}
& 50 \mathrm{mg} \text { drug }=\mathrm{mL} \\
& 40 \mathrm{mg} \text { drug } \times \frac{\mathrm{mL}}{50 \mathrm{mg} \text { drug }}=0.8 \mathrm{~mL}
\end{aligned}
$$

A car (averaging 17.5 miles per gallon) is traveling 50 miles per hour. How many gallons of gas will be used on a trip that lasts 0.75 hours?

$$
\begin{aligned}
& 17.5 \mathrm{mi}=\mathrm{gal} \quad 50 \mathrm{mi}=h r \\
& 0.75 \mathrm{hr} \times \frac{50 \mathrm{mi}}{\mathrm{hr}} \times \frac{\mathrm{gal}}{17.5 \mathrm{mi}}=2.1 \mathrm{gal}
\end{aligned}
$$

If gas is $\$ 3.45$ per gallon, what is the cost of the trip?

$$
\begin{gathered}
\$ 3.45=\text { gal } \\
2.1 \text { gal } \times \frac{\$ 3.45}{\text { gal }}=\$ 2.39
\end{gathered}
$$

