You flip the light switch in your den, but nothing happens. What is wrong?
observation experiment: Flip switch, but the light doesn't turn on.

Measurements are COMPARISONS of properties against accepted standards, called units.

A properly-reported measurement has TWO PARTS:
(1) a measured NUMBER
(2) a UNIT

$$
\begin{aligned}
& \text { English/US Units: } \\
& 1 \text { foot }=12 \text { inches } 1 \text { yard }
\end{aligned}=3 \text { feet } \quad 1 \text { mile }=1760 \text { yards } \quad \begin{aligned}
\text { S280 feet }=1 \text { mile }
\end{aligned}
$$

So what's the problem?
English units don't relate to one another in meaningful, easy-to-remember ways.
Different kinds of English units have completely different conversion factors - which must be memorized separately.

English units are nonstandard and difficult to use. Solution? THE METRIC SYSTEM

All metric units are made up of COMBINATIONS of BASE UNITS!

Metric Base Units:

Length	meter	m		
Mass	kilogram	kg	$*$ *we usually treat the gram as if it's the base unit for mass!	
Temperature	Kelvin	K	Comparing to the English system:	
Time	second	s	- One meter is approximately 3.3 feet. - One kilogram is approximately 2.2 pounds.	

about

$$
S\left[-\left[\begin{array}{l}
5 \\
1
\end{array}\right.\right.
$$

Metric units may be made larger or smaller by adding PREFIXES.
Metric Prefixes:

mega-	10^{6}	M
kilo-	10^{3}	k
centi-	10^{-2}	c
milli-	10^{-3}	m
micro-	10^{-6}	μ

Bigger units
Memorize these prefixes.!

Applying prefixes

$$
\begin{aligned}
& \Lambda \subset m=1 \quad 1=10^{-2} m\left(\frac{1}{100} m\right) \\
& \Lambda\left(10 m=10^{3} m(1000 m)\right.
\end{aligned}
$$

Scaling units with metric prefixes ... examples

The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

$$
k_{\mathrm{m}}=10^{3} \mathrm{~m}(1000 \mathrm{~m})
$$

107 km
By "best suited", we mean a metric unit that would represent the number without many beginning or end zeros. These kinds of numbers are easier for us to remember!

A piece of chalk is 0.080 meters long. What metric unit would be best suited for this length?

$$
\begin{aligned}
& \text { this length? } \\
& c m=10^{-2} m
\end{aligned} \quad(1 / 100 \mathrm{~m})
$$

$$
8.0 \mathrm{~cm}
$$

Derived Units

- are units that are made up of combinations of metric base units with each other and/or with prefixes

Example: Speed $\frac{\text { miles }}{h r}, \frac{K m}{h r}\left(\frac{\text { length }}{\text { time }}\right), \frac{m}{s}$
Two derived units are particularly important in introductory chemistry:

1) VOLUME
2) DENSITY

VOLUME

VOLUME $=L \times W \times H$

What are the units of volume in the metric system?
$L=$ LENGTH. Base unit of length is the meter (m)
$W=$ WIDTH. Also a length- use meters (m)
$H=$ HEIGHT. Also a length- use meters (m)

$$
\begin{aligned}
\text { VOLUmGUNIT } & =m \times m \times m \\
& =m^{3} \text { "cubic meters" }
\end{aligned}
$$

... but the CUBIC METER is much too large a unit for lab scale or medical work. We need a smaller unit.

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

A smaller unit For volume?
cubic decimeters! dm^{3}

$$
(\text { decimeter }=1 / 10 \text { meter })
$$

Cubic decimeters are given the name "liters", abbreviation "L"
In the lab, we typically need an even smaller unit than the liter, so we use milliliters (mL)

"cc"
cubic centimeter
=
milliliter

$$
\begin{aligned}
& 1 m L=10^{-3 L} \\
& 1000 m L=1 L
\end{aligned}
$$

- Density is a measure of the concentration of matter; of how much matter is present in a given space
- Density is defined as the MASS per unit VOLUME, or ...

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

What are the metric units of DENSITY?

$$
\begin{gathered}
\text { mass: Kilogram }\left(\mathrm{K}_{\mathrm{g}}\right) \\
\text { volume: Cubic meter }\left(\mathrm{m}^{3}\right) \\
\text { So, density unit }=\frac{\mathrm{K}^{\prime}}{m^{3}}
\end{gathered}
$$

We don't usually use either kilograms OR cubic meters in the lab, since both are large for lab-scale work.

In the lab, we typically measure masses as grams and volumes as milliliters, so the density unit we will use most often is:

$$
\frac{g}{m L} \text { same as } \frac{g}{\mathrm{~cm}^{3}} \text { or } \frac{g}{c c}
$$

A useful density to remember:
WATER at room temp: Density $=1 \mathrm{~g} / \mathrm{mL}$

Measuring density
... of a liquid

1) Measure mass of empty cylinder
\qquad
2) Fill cylinder and measure volume of liquid

Volume $=25.3 \mathrm{~mL}$
3) Measure mass of filled cylinder

$$
\operatorname{mass}=130.55 \mathrm{~g}
$$

5) Density = mass liquid / volume liquid

$$
\begin{aligned}
\text { Density } & =\frac{33.20 \mathrm{~g}}{25.3 \mathrm{~mL}} \\
& =1.31 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

