$14.67, p 618$

$$
I_{2}(g)+B r_{2}(g) \rightleftharpoons 2 I B r(g) \quad K_{c}=120
$$

Find the equilibrium composition at 150 C if a 5.0 L vessel initially contains 0.0015 mol (each) of iodine and bromine

$$
K_{c}=\frac{\left[I B_{r}\right]^{2}}{\left[I_{2}\right]\left[B_{r_{2}}\right]}=120
$$

We need to express everything here in terms of one variable

Species	$\left[I_{\text {initial }}\right]$	Δ	$\left[G_{\text {quilibrion }}\right]$
$I B_{r}$	0	$+2 x$	$2 x$
I_{2}	$\frac{0.001 \mathrm{smol}}{S .00 \mathrm{~L}}=3 \times 10^{-4}$	$-x$	$3 \times 10^{-4}-x$
$B r_{2}$	$\frac{0.001 \mathrm{smol}}{5.00 \mathrm{~L}}=3 \times 10^{-4}$	$-x$	$3 \times 10^{-4}-x$
$120=\frac{\left[I B_{r}\right]^{2}}{\left[I_{2}\right]\left[B_{r_{2}}\right]}=\frac{(2 x)^{2}}{(0.0003-x)(0.0003-x)}$			

$$
\begin{aligned}
& \frac{(2 x)^{2}}{(0.0003-x)^{2}}=120 \\
& \sqrt{\frac{(2 x)^{2}}{(0.0003-x)^{2}}}=\sqrt{120} \\
& \frac{2 x}{0.0003-x}=10.95445115
\end{aligned}
$$

$$
\begin{aligned}
& =5.1 \times 10^{-4} \mathrm{M} \\
& {\left[I_{2}\right]=\left[B r_{2}\right]=3 \times 10^{-4}-2.5368 \times 10^{-4}} \\
& =4.6 \times 10^{-5} \mathrm{~m} \\
& 2 x=0.0032863353-10.95445115 x \\
& 12.95445115 x=0.0032863353 \\
& x=2.5368 \times 10^{-4}
\end{aligned}
$$

Calculate the pH of a solution made by dissolving 0.0702 grams of the strong base potassium hydroxide, KOH , in enough water to make $250 . \mathrm{mL}$ of solution?

$$
\begin{aligned}
& p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& K_{w}=1 . \mathrm{O}_{\times} 10^{-N 1}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Since $\mathrm{KOH} \rightarrow \mathrm{K}^{+}+\mathrm{OH}^{-}$, we need to know $[\mathrm{YOH}]_{\text {nominal }}$ to Find $\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
& 0.0702 \mathrm{ghOH} \times \frac{\mathrm{molh} \mathrm{HOH}}{56.1056 \mathrm{~g} \mathrm{HOH}} \times \frac{}{0.250 \mathrm{~L}}=0.005004848 \mathrm{~m} \\
& {[\mathrm{KOH}]_{\mathrm{numin}_{\mathrm{N}}}=\left[\mathrm{OH}^{-}\right]=0.005004848 \mathrm{~m}} \\
& {\left[\mathrm{H}_{3} \mathrm{u}^{t}\right](0.005004848 \mathrm{~m})=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right]=1.998 \times 10^{-12}} \\
& p H=11.70
\end{aligned}
$$

