$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find pH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Check the ions formed by the salt to see if they have acidic or basic properties:
Na^{+}: Not a B-L acid, since it has no protons to donate. Not likely to be a
' B-L base, either. It's a simple alkali metal ion - positively charged.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$: Has hydrogens, but also a negative charge. It's probably a proton

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& \text {L Acetic acid. Acetic acid is a WEAK ACID and } \\
& \text { stable in water, so we expect the ACETATE ION } \\
& \text { to be able to function as a base. } \\
& \mathrm{Kb}_{3} \mathrm{c}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]} \\
& \mathrm{Kb} \text { for acetate ion is not available in } \\
& \text { our chart on page A-14, BUT we can find } \\
& \text { the Ka for acetic acid - its conjugate - on } \\
& \text { the previous page! } \\
& K_{a_{1} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}=1.7 \times 10^{-5} ; \mathrm{Ka}_{a} K_{b}=1.0 \times 10^{-14} ; \mathrm{K}_{b}=5.88 \times 10^{-10}
\end{aligned}
$$

166

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& \mathrm{Kb}_{2} \mathrm{C}_{2} \mathrm{H}_{3}- \\
& =\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.88 \times 10^{-10}
\end{aligned}
$$

Species	$[$ In, Final $]$	Δ	$[$ Equilibrium $]$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	0	$+X$	X
OH^{-}	0	$+X$	X
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	0.100	$-X$	$0.100-x$

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=5.88 \times 10^{-10} \\
& \left\lvert\, \begin{array}{l}
x \ll 0.100 \\
\chi^{2.100-x} \approx 0.100 \\
\frac{x^{2}}{0.100}=5.88 \times 10^{-10}
\end{array}\right.
\end{aligned}
$$

$$
x=7.67 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]
$$

We need pH, but we've calculated HYDROXIDE concentration.

$$
\begin{aligned}
& \text { DOH }=-\log _{10}\left(7.67 \times 10^{-6}\right) \\
& \text { DOH }=5.12
\end{aligned}
$$

Convert to pH :

$$
\begin{aligned}
& \mathrm{PH}+\mathrm{POH}=14.00 \\
& \mathrm{pH}+5.12=14.00 \\
& p H=8.88
\end{aligned}
$$

Compare:
$\mathrm{pH}=7.00$ for pure distilled water
$\mathrm{pH}=11.13$ for 0.100 M ammonia
$\mathrm{pH}=13.00$ for 0.100 M NaOH (strong base)

168

$$
\begin{aligned}
& \mathrm{O} .100 \mathrm{M} \mathrm{NaCl} \text {, Find } \mathrm{pH} \\
& \mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

Check the ions formed to see if they are acidic or basic:
Na^{+}: Not a B-L acid, since it has no protons to donate. Not likely to be a

- B-L base, either. It's a simple alkali metal ion - positively charged.

C 1^{-}: Not a B-L acid, since it has no protons (H) to donate. Might be a proton acceptor due to its negative charge.

$$
\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCl}+\mathrm{OH}^{-}
$$

This is hydrochloric acid, a STRONG ACID. it completely ionizes in water, meaning that the chlloride ion must not be a good proton acceptor.
... so chloride ion should be NEUTRAL.

Since neither sodium ion nor chloride ion affect the water equilibrium, the pH of the solution will be the same as that of pure distilled water: 7.00

169 POLYPROTIC ACIDS
Find pH of $\mathrm{O}, 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a 3}=4.8 \times 10^{-13}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solving the equilibrium of phosphoric acid's first proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{K}_{4}=6.9 \times 10^{-3} \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=6.9 \times 10^{-3}
\end{aligned}
$$

Species	$\left[I_{n, t i n l}\right]$	Δ	[Equilibrium]
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0.10-x$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	0	$+x$	x
$\mathrm{H}_{3} 0^{+}$	0	$+x$	x

$\frac{x^{2}}{0.10-x}=6.4 \times 10^{-3}$

$$
\begin{aligned}
& x^{2}=0.00069-0.0069 x \\
& x^{2}+0.0069 x-0.00069=0 \\
& a=1 \quad b=0.0069 \quad c=-0.00069 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

This time, we'll solve with the quadratic equation. We're not as confident that ' x ' $\ll 0.10$ as we were in the previous examples.

$$
\frac{-0.0069 \pm 0.0529868852}{2}
$$

Discarding the negative root (does not make physical sense)...

$$
\begin{aligned}
& x=0.0230=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& p H=1.64
\end{aligned}
$$

${ }^{171}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250 . mL of solution.

Find out the nature of the salt: Acidic? Basic? Neutral?

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}^{-} \\
& \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \begin{array}{l}
\text { Nitric acid is a STRO } \\
\text { ION will be neutral. }
\end{array} \\
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \begin{array}{l}
\text { Ammonia is a WEAK BASE, so AMMONIUM } \\
\text { ION should be somewhat ACIDIC. }
\end{array} \\
& \begin{array}{l}
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{Ka}_{1} \mathrm{NH}_{4}^{+}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{array} \\
& \stackrel{K^{K} a_{1} \mathrm{NH}_{4}+}{ } \\
& \overline{K_{b_{1}, \mathrm{NH}_{3}}}=1.8 \times 10^{-5} \quad(\sec p A-14) \\
& \left(K_{a_{, ~ N H}^{4}}^{+}\right)\left(K_{b}, N H_{3}\right)=1.0 \times 10^{-14} \\
& K_{a, N H_{4}}+=5.56 \times 10^{-10}
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& \frac{x^{2}}{0.14990-x}=5.56 \times 10^{-10} \\
& \downarrow x<0.14990 \\
& \frac{x^{2}}{0.14990}=5.56 \times 10^{-10}
\end{aligned}
$$

$$
x=9.13 \times 10^{-6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
P H=5.04
$$

This pH seems okay for an acidic salt.

