For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$HA + H_2 0 \rightleftharpoons H_3 0^+ + A^-$$

$$HA + H_2 0 \rightleftharpoons H_3 0^+ (A^-) = Again, water's concentration will not change significantly, so it is folded into the ionization constant ionization (HA) = concentration of undissociated acid$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$B + H_2 O \rightleftharpoons BH^{+} + OH^{-}$$

$$K_b = \frac{[BH^{+}][OH^{-}]}{[B]}$$
base [B]
ionization
constant

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the appendices, on pages A-13 and A-14

WEAK ELECTROLYTES

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.

- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100M solution of nitrous acid, a WEAK ACID (HND_2)

$$HNO_{2} + H_{2}O = H_{3}O^{+} + NO_{2}$$

$$K_{\alpha} = \frac{[H_{3}O^{+}][NO_{2}]}{[HNO_{2}]} = 5.1 \times 10^{-4}$$
walues for Ka are determined experimentally (We look this number up in a table)

What is the pH of the solution?

of acid ionization constants)

To find the pH, we need to determine the concentration of hydronium, $\left[H_{2} O^{4} \right]$

... so we need to solve the equilibrium expression. But we don't know all of the concentrations AT EQUILIBRIUM to do so!

but they ARE related! We assume the amount of hydronium from the water is small enough to ignore		
INITIAL CONC	CHANGE	EQUILIBRIUM CONC
\circ^{\checkmark}	+X	X
\bigcirc	$+ \times$	X
0,100	-X	0,100 - X
		is small enough INITIAL CONC CHANGE 0 + X 0 + X

... this is similar to the problems from the equilibrium chapter!

151

2.16, which is not significantly different from our asnwer.

Compare:

152

- Weak acid HNO_2 : pH of 0.10 M solution = 2.15

Let's compare the pH of the weak nitrous acid with the pH of a stopn acid like nitric acid: 0 10 m H w 2 . What is 0 H?

$$HNO_3 + H2O \longrightarrow H_3O^{\dagger} + NO_3^{-}$$

$$O_1OM HNO_3, [H_3O^{\dagger}] = 0.10$$

$$\rho H = 1.00$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared
- to the nominal acid concentration)