For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$
\begin{aligned}
& \qquad \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{A}^{-} \\
& \left.\quad \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\frac{[\mathrm{HA}]}{}}\right] \begin{array}{c}
\text { Again, water's concentration will } \\
\text { not change significantly, so it is } \\
\text { folded into the ionization constant }
\end{array} \\
& \text { acid } \begin{array}{l}
\text { ionization- } \\
\text { constant }
\end{array}
\end{aligned}
$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{b} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the
ionization appendices, on pages A-13 and A-14

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
& \left.\mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=5.1 \times 10^{-4} \right\rvert\, \begin{array}{l}
\text { values for Ka } \\
\text { are determined } \\
\text { experimentally }
\end{array} \\
& \text { pH of the solution? }
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { (We look this number up in a table } \\
\text { of acid ionization constants) }
\end{array}
\end{aligned}
$$

What is the pH of the solution?
To find the pH , we need to determine the concentration of hydronium, $\left[\mathrm{H}_{3} \mathrm{O}^{t}\right]$
... so we need to solve the equilibrium expression. But we don't know all of the concentrations AT EQUILIBRIUM to do so!
... but they ARE related! \qquad We assume the amount of hydronium from the water

SPECIES	INITIAL CONC	CHANGE	EQUILIBRIUM CONC
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	0	$+X$	X
$\left[\mathrm{NO}_{2}^{-}\right]$	0	$+X$	X
$\left[1-1 \mathrm{NO}_{2}\right]$	$O .100$	$-X$	$O, 100-X$

... this is similar to the problems from the equilibrium chapter!

151

$$
\begin{aligned}
& 5.1 \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{NO}_{2}-\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& 5.1 \times 10^{-4}=\frac{(x)(x)}{(0.100-x)}
\end{aligned}
$$

Quadratic equation:

$$
S_{1} 1 \times 10^{-4}=\frac{x^{2}}{0.100-x}
$$

$$
K
$$

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a b}}{2 a}
\end{aligned}
$$

IF 'x' is small relative to 0.1, then 0.1 - x approximately equals 0.1

$$
5.1 \times 10^{-4}=\frac{x^{2}}{0.100}
$$

$$
5.1 \times 10^{-5}=x^{2}
$$

$$
7.14 \times 10^{-3}=x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

\[

\]

$$
S_{0,}, p H=2.1 S
$$

Solving the quadratic for 'x' (in other words, not making the assumption that we did above) gives a pH of 2.16, which is not significantly different from our asnwer.

Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.15$

Let's compare the pH of the weak nitrous acid with the pH of a stop acid like nitric acid:

$$
\begin{gathered}
0.10 \mathrm{mHNO} 3, \text { what is } \mathrm{pH}_{1} \\
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}- \\
\mathrm{O}_{2} 10 \mathrm{MHNO},\left[\mathrm{H}_{3} \mathrm{OH}^{+}\right]=0.10 \\
\mathrm{PH}=1.00
\end{gathered}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)

