An 8.00 L reaction vessel at 3900C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of all species at equilibrium.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g) Kc = 0.0123$$

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g) K_c = 0.0123$$
 $K_c = 0.0123 = [No]^2$
 $V_c = 0.0123$
 $V_c = 0.0123$

We need to express all of these concentrations

Species	[Initial]		[Equilibrium]
Nz	8.00L = 0.10625	•	0.10625-X
02	0.850mol = 0.10625	$-\chi$	0.10625-x
NO	0	+2x	2x

Let 'x' equal the change in concentration of nitrogen gas

$$\frac{[No]^2}{[N_2][o_2]} = \frac{(2x)^2}{(0.10625-x)(0.10625-x)} = 0.0123$$

We need to solve the expression above for 'x' to complete this problem.

$$\frac{(2x)^2}{(0.10625-x)(0.10625-x)} = 0.0123$$

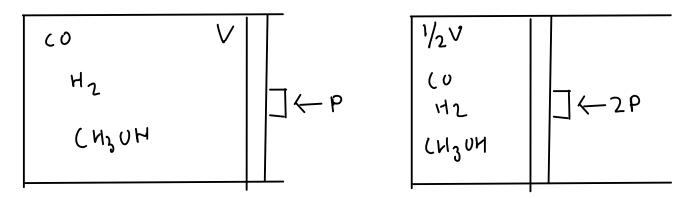
$$\sqrt{\frac{(2x)^2}{(0.10625-x)^2}} = \sqrt{0.0123}$$

Solve by quadratic equation OR take the square root of both sides to simplify this equation.

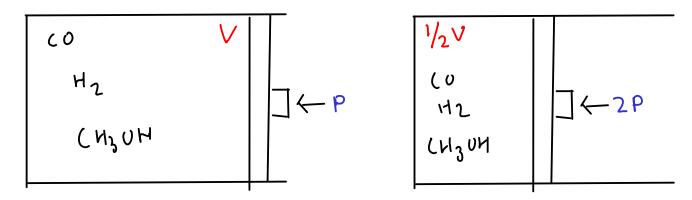
X=0.0055822943

Now, we use 'x' to find the equilibrium concentrations:

 $N_2: 0.1062S-x=0.101M$ $O_2: 0.1062S-x=0.101M$ $N_0: 2x=0.0112M$


We know Kc = 0.0123, so we expect the reactants to dominate at equilibrium! (They do)

5	pecies	[Equilibrium]
	Nz	0.10625-X
•	02	0.10625-X
	NO	2x


- Pressure can affect a GAS-PHASE equilibrium ... sometimes. How?

$$(O(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

- ... how might pressure affect this equilibrium?
- If the change in pressure CHANGES CONCENTRATIONS, then this equilibrium would be disturbed and Le Chateleir's Principle would apply.
 - Adding an INERT GAS would change pressure, but would it change concentration of the gases? NO so addition of argon would have no effect on the equilibrium!
 - What about COMPRESSION?

... compression increases pressure by DECREASING total volume.

... but this volume change affects ALL concentrations the same way. In this example, each concentration is DOUBLED.

$$(O(g) + 2H_2(g) \rightleftharpoons (H_3OH(g))$$

$$(I) = \frac{(I)}{(I)(I)^2} = \frac{(I)}{(I)(I)^2}$$
For simplicity, let's assume Kc = 1, and all concs = 1M

$$\frac{Doubling}{gives Q=} = \frac{2}{(2)(2)^2} = \frac{1}{4}$$

Q < Kc, so equilibrium shifts to the RIGHT, forming more methanol at the expense of hydrogen and carbon monoxide.

In general, compressing an equilibrium reaction in the gas phase will cause the equilibrium to shift towards the side with fewer moles of gas. This causes the pressure to decrease.

In general, decompressing an equilibrium reaction in the gas phase will cause the equilibrium to shift towards the side with more moles of gas. This causes the pressure to increase.

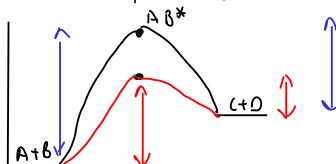
HOWEVER, this can only be true IF there's a side of the reaction with more moles of gas than the other. If both sides of the reaction have the SAME number of moles of gas, then a pressure change will NOT affect the equilibrium.

Example:
$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

... would not respond to a pressure change.

FACTORS THAT MAY AFFECT EQUILBRIUM

1) TEMPERATURE (effect depends on whether reaction is endothermic or exothermic)


- Changes rate of reaction, too!

... changes Kc

PRESSURE - only for gas-phase reactions which have different numbers of moles of gas on each side of the equilbrium. Otherwise, no effect.

... no change of Kc

(3) CATALYSTS - do NOT affect equilibrium, but make the equilbrium state occur more quickly.

The catalyst raises BOTH forward and reverse rates, so it doesn't affect the composition of the equilibrium mixture!

CONCENTRATION - Le Chateleir's Principle applies for changing concentrations. An equilibrium will shift to counteract a change in concentration of reactant or product.

... doesn't change Kc.

ACID/BASE EQUILIBRIUM

- Several scientific theories exist that define acid-base chemistry. We will discuss THREE of these theories.
- These theories differ in the way that acids, bases, and their associated reactions are defined.
- Typically, the newer theories include MORE chemicals under the umbrella of "acid-base chemistry"!

THREE ACID-BASE THEORIES

- (1) Arrhenius theory
- 2) Bronsted-Lowry theory
- 3 Lewis theory

- The oldest model of acid-base chemistry!

- Only applicable to systems where WATER is the solvent!

ACIDS are substances that ionize in water to increase the concentration of HYDRONIUM ION

$$HA + H_2O = H_3O^{\dagger} + A^{-}$$
Hydronium ion

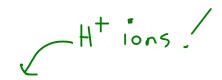
or, for simplicity:
$$HA \stackrel{H_2O}{\longleftarrow} H^+ + A^-$$

"Hydrogen ion" - doesn't really exist as a free ion in water, but a convenient simplification!

ARRHENIUS THEORY

BASES are substances that ionize in water to increase the concentration of HYDROXIDE ION

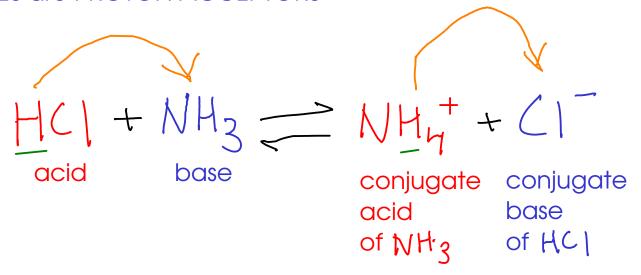
For soluble metal hydroxides: $V_{\alpha}O_{H} \rightarrow V_{\alpha}^{+} + O_{H}^{-}$ $MOH \stackrel{HzO}{\longleftarrow} M^{+} + OH^{-}$ Hydroxide ion


For other Arrhenius bases:

An Arrhenius acid base reaction can be represented by:

$$H_3O^+ + OH^- \Longrightarrow 2H_2O$$
 "neutralization"

or, using hydrogen ion instead of hydronium

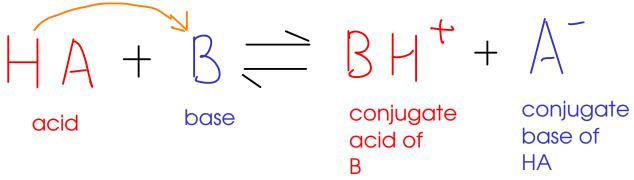

BRONSTED-LOWRY THEORY

- Bronsted-Lowry theory views acid-base reactions as <u>PROTON</u> TRANSFER reactions!

ACIDS are PROTON DONORS

BASES are PROTON ACCEPTORS

A CONJUGATE PAIR is an acid and a base that differ by a proton!


... a few examples of conjugate pairs:

Species	Conjugate
NH_3	NH4+
H20	0 H -
H20	H30+
HC2H3O2	C2H302

RED for acid

BLUE for base

A generic Bronsted-Lowrey acid.base reaction:

... you should be able to write the products of a Bronsted-Lowry acid-base reaction, identifying the CONJUGATE PAIRS

IN WATER...

HA+
$$H_2O \Longrightarrow H_3O^+ + A^-$$

conjugate base of HA

HC2H3O2+ $H_2O \Longrightarrow H_3O^+ + C_2H_3O_2^-$ Acetic acid and water

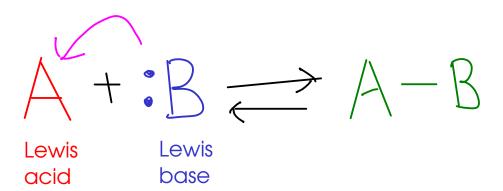
B+H20
$$=$$
 BH++OH-
base $=$ conjugate acid of B

NH3+IH20 $=$ NHH++OH- Ammonia and water

This is why we often call an ammonia/water solution "ammonium hydroxide"!

In the red reactions, water functions as a base. In the blue reactions, water functions as a acid!

LEWIS THEORY


- Lewis theory treats acid-base chemistry as ELECTRON-TRANSFER chemistry involving pairs of electrons
- Lewis acid-base reactions form new covalent bonds (of interest to organic chemists!)

ACIDS are ACCEPTORS of electron pairs

... this is why some METAL IONS, even though they contain no hydorgen ions, can exhibit ACIDIC character. Many metal ions can accept a pair of electrons to form a COMPLEX with a Lewis base! ex, $h_a(NH_3)_3^+$

BASES are DONORS of electron pairs.

... so, Lewis bases have LONE PAIRS OF ELECTRONS in their Lewis structures

... In a Lewis acid-base reaction, electrons are donated from the Lewis base to the Lewis acid. This forms a new COVALENT BOND between the acid and the base.