$$
\begin{aligned}
& F W_{\mathrm{NH}_{4} \mathrm{NO}_{3}}=80.0434 \mathrm{~g} / \mathrm{mol} \\
& 2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g) \\
& \text { At 300.C, ammonium nitrate violently decomposes to produce nitrogen gas, oxygen gas, } \\
& \text { and water vapor. What is the pressure inside a } 30 \mathrm{~mL} \text { vessel at 300C caused by } \\
& \text { the decomposition of } 15.0 \text { grams of ammonium nitrate? } \\
& 1 \text { - Convert } 15.0 \text { grams of ammonium nitrate to moles using formula. } \\
& 2 \text { - Convert moles ammonium nitrate to total moles of gas using chemical equation } \\
& 3 \text { - Calculate pressure inside vessel using ideal gas equation. } \\
& 80.0434 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \mid 2 \text { mol } \mathrm{NH}_{4} \mathrm{NO}_{3}=7 \mathrm{~mol} \mathrm{gas} \\
& 15 . \mathrm{O}_{\mathrm{y}} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{\mathrm{mol} \mathrm{NHyNO}_{3}}{80.0434 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}} \times \frac{7 \mathrm{~mol} \mathrm{gas}}{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}=0.6558941774 \mathrm{~mol} \mathrm{gas} \\
& \begin{array}{l|l}
P V=n R T & n=0.6558941774 \mathrm{~mol} \mathrm{gas} \quad R=0.08206 \frac{\mathrm{~L}-\mathrm{ctm}}{\mathrm{~mol} \cdot \mathrm{~h}}
\end{array} \\
& P=\frac{n R T}{V} \quad T=300 .{ }^{\circ} \mathrm{C}=573 \mathrm{~K} \quad V=30.0 \mathrm{~mL}=0.0300 \mathrm{~L} \\
& p=\frac{(0.6558941774 \mathrm{~mol} \mathrm{gas})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(573 \mathrm{~h})}{(0.0300 \mathrm{~L})}=1030 \mathrm{~atm}
\end{aligned}
$$

