Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 grams sodium carbonate to moles. Use formula weight.
2 - Convert moles sodium carbonate to moles HCl . Use balanced chemical equation.
3 - Convert moles HCl to volume using the concentration $(6.00 \mathrm{M})$.

$$
\begin{aligned}
& \text { (1) } \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na} 2 \times 22.99 \\
& \text { C } 1 \times 12.01 \\
& 0 \frac{3 \times 16.00}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\operatorname{mos} \mathrm{Na}_{2} \mathrm{CO}_{3}} \\
& 25 . O \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\operatorname{mos~} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{gNa}_{2} \mathrm{CO}_{3}}=0.235871 \mathrm{~mol} \mathrm{Na} \mathrm{H}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(2) 2 mol $\mathrm{HCl}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.235871 \mathrm{~mol}_{\mathrm{n}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3}}}=0.471743 \mathrm{~mol} \mathrm{HCl}
$$

Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}_{4}(\mathrm{aq})\right.
$$

1 - Convert 25.0 grams sodium carbonate to moles. Use formula weight.
2 - Convert moles sodium carbonate to moles HCl . Use balanced chemical equation.
3 - Convert moles HCl to volume using the concentration (6.00 M).
(3) $6.00 \mathrm{~m}: 6.00 \mathrm{molHCl}=\mathrm{L} \quad m L=10^{-3} \mathrm{~L}$

$$
0.471243 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL} \mathrm{of} 6.00 \mathrm{mHCl}
$$

${ }^{103}$

$$
\begin{aligned}
& 1 \mathrm{SI} .90 \mathrm{~g} / \mathrm{mol} \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert mass iron(II) sulfate to moles. Use formula weight.
2 - Convert moles iron(II) sulfate to moles potassium permanganate. Use chemical equation.
3 - Convert moles potassium permangenate to volume using concentration.

$$
\begin{aligned}
& 1 \mathrm{St} .90 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4}\left|10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{~mol} \mathrm{KrnnO}_{4}\right| 0.250 \mathrm{~mol} \mathrm{hmor}_{4}=\mathrm{L} \\
& \mathrm{~mL}=10^{-3} \mathrm{~L}
\end{aligned}
$$

$$
\begin{gathered}
3.36 \mathrm{~g} \mathrm{FeSO}_{4} \times \frac{\mathrm{mol} \mathrm{FeSO}_{4}}{151.9 \mathrm{~g} \mathrm{FeSO}_{4}} \times \frac{2{\mathrm{~mol} \mathrm{kmrO}_{4}}_{10 \mathrm{~mol} \mathrm{FeSO}_{4}}^{4} \times \frac{\mathrm{L}}{0.250 \mathrm{~mol} \mathrm{hmoO}_{4}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=}{}=1 \mathrm{~mL} \text { of } 0.250 \mathrm{M} \mathrm{KMnO}_{4}
\end{gathered}
$$

25.0 mL of acetic acid solution requires 37.3 mL of 0.150 M sodium hydroxide for complete reaction. The equation for this reaction is:

$$
\mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC} 2 \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What is the molar concentration of the acetic acid?

$$
\frac{\text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\text { L Solution }}
$$

Since we already know the volume of acetic acid solution, we actually need to calculate the number of moles of acetic acid IN the solution!

$$
0.150 \text { mol } \mathrm{NaOH}=L \quad \operatorname{mal} \mathrm{NaOH}=\mathrm{mo}_{0} 3 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad m \mathrm{~L}=10^{-3} \mathrm{~L}
$$

First, find moles of acetic acid:

$$
37.3 m L \times \frac{10^{-3} L}{m L} \times \frac{0.150 \mathrm{~mol} \mathrm{NaOH}}{L} \times \frac{\mathrm{mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\operatorname{mal~} \mathrm{NaOH}}=0.005595 \mathrm{~mol} \mathrm{H}
$$

Then, get the volume of acetic acid in the right units:

$$
25.0 \mathrm{~mL} \times \frac{10^{-3} L}{m L}=0.0250 \mathrm{~L}
$$

To get molarity, divide moles acetic acid / L acetic acid solution

$$
M=\frac{\text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\mathrm{~L} \text { Solution }}=\frac{0.005595 \mathrm{~mol} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{0.0250 \mathrm{~L}}=0.224 \mathrm{MH} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

$$
4 \mathrm{C}_{3}^{42.081 \mathrm{~g} / \mathrm{mol}}+6 \mathrm{NO} \longrightarrow 4 \mathrm{C}_{3}^{\mathrm{H}} \mathrm{H}_{3} \mathrm{~N}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}
$$

propylene
acrylonitrile
Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess $N O$ present.
1 - Convert 651 kg propylene to moles. Use formula weight.
2 - Convert moles propylene to moles acrylonitrile using chemical equation.
3 - Convert moles propylene to mass acrylonitrile using formula weight.

$$
\begin{aligned}
& 42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}\left|4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right| \\
& 53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \quad \mathrm{Kg}_{g}=10 \mathrm{~g} \\
& \begin{array}{r}
6 \$ 1 \mathrm{Kg} \mathrm{C}_{3} \mathrm{H}_{6} \times \frac{10^{3} 9}{\mathrm{Kg}_{g}} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{mal} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{gC} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol}_{0} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}= \\
\text { (1) (2) }
\end{array} \\
& =821000 \mathrm{~g} C_{3} \mathrm{H}_{3} \mathrm{~N} \quad(821 \mathrm{~kg})
\end{aligned}
$$

