- Density is a measure of the concentration of matter; of how much matter is present in a given space
- Density is defined as the MASS per unit VOLUME, or ...

$$
\text { Density }=\frac{\text { mass }}{\text { Volume }}
$$

What are the metric units of DENSITY?

$$
\begin{aligned}
& \text { mass: Kilogram }\left(\mathrm{r}_{\mathrm{g}}\right) \\
& \text { volume: cubic meter }\left(\mathrm{m}^{3}\right) \\
& \text { So, density unit: } \frac{\mathrm{Kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

As you saw in the lab, we didn't use either kilograms or cubic meters in the lab.

In the lab, we typically measure masses as grams and volumes as milliliters, so the density unit we will use most often is:

$$
\frac{g}{m L} \text { same as } \frac{g}{\mathrm{~cm}^{3}}
$$

A useful density to remember:
WATER at room temp: Density $=1 \mathrm{~g} / \mathrm{mL}$
... of a liquid

4) Subtract to find mass of liquid

$$
\begin{array}{r}
130.559 \\
-\quad 97.359 \\
\hline 33.209
\end{array}
$$

2) Fill cylinder and measure volume of liquid
Volume $=25.3 \mathrm{~mL}$
3) Measure mass of filled cylinder

$$
\text { mass }=130.55 \mathrm{~g}
$$

$$
\begin{aligned}
\text { Density } & =\frac{33.20 \mathrm{~g}}{25.3 \mathrm{~mL}} \\
& =1.31 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

We will use the method of dimensional analysis, sometimes called the factor-label method.... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.

$$
\begin{aligned}
& \text { Example } \\
& 12 \mathrm{in}=1 \mathrm{ft}
\end{aligned}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\left.\begin{aligned}
& \text { For example, "k ,lo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \frac{K g}{}=10^{3} \mathrm{~g} \\
& \frac{K m}{}=10^{3} \mathrm{~m} \\
& K L=10^{3} \mathrm{~L} \\
& K s=10^{3} \mathrm{~s}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

$$
m g=10^{-3} \quad k g=10^{3}
$$

Convert 14500 mg to kg

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10_{\mathrm{g}}^{3}}=0.0145 \mathrm{sy}
$$

If you have TWO prefixes in your problem, you will apply TWO conversion factors in your solution!

Convert 0.147 mm to $\mu \mathrm{m}$

$$
m m=10^{-3} \mathrm{~m} \quad \mu m=10^{-6} \mathrm{~m}
$$

$$
0.147 \mathrm{~m} / \mathrm{m} \times \frac{10^{-3} \mathrm{~m}}{\mathrm{~m}_{\mathrm{m}}} \times \frac{\mu \mathrm{m}}{10^{-6} \mathrm{~m}}=147 \mathrm{~mm}
$$

19
Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1 \mathrm{in}$

$$
\begin{gathered}
2.54 \mathrm{~cm}=\text { in } \quad c m=10^{-2} \mathrm{~m} \\
38.47 \text { in } \times \frac{2.54 \mathrm{sm}}{i \mathrm{~m}} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=0.9771 \mathrm{~m}
\end{gathered}
$$

${ }^{20}$ Even if you're unfamiliar with the metric units involved in a problem, you can still do conversions easily.

$$
\begin{array}{ll}
88100 \mathrm{kHz} \text { to } \mathrm{MHz} \quad \mathrm{KHz}=10^{3} \mathrm{~Hz} \quad \mathrm{MHz}=10^{6} \mathrm{~Hz} & H z=\frac{1}{5} \text { (frequency) } \\
88100 \mathrm{kHz} \times \frac{10^{3} \mathrm{~Hz}}{\mathrm{~K} \cdot \mathrm{~Hz}} \times \frac{\mathrm{MHz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz} & \\
0.004184 \mathrm{~kJ} \text { to J } \quad \mathrm{kJ}=10^{3} \mathrm{~J} & \mathrm{~J}=\text { energy } \\
0.004184 \mathrm{~kJ} \times \frac{10^{3} \mathrm{~J}}{\mathrm{~kJ}}=4.184 \mathrm{~J} &
\end{array}
$$

Practical applications of dimensional analysis: Drug calculations.
Example: A patient is ordered 40 mg of codeine phosphate by subcutaneous injection. 50 mg in 1 mL liquid is available. How much of this liquid should be administered?

This is a conversion factor. It equates the mass of drug in the solution to the volume of the solution. We can use it in the same way we'd use the other conversion factors we have done so far!

$$
\begin{aligned}
& 50 \mathrm{mg} \text { drug }=m L \text { liquid } \\
& 40 \mathrm{mg} \text { drug } \times \frac{\mathrm{mL} \mathrm{hiquid}}{50 \mathrm{mg} \text { drug }}=0.8 \mathrm{~mL} \text { liquid }
\end{aligned}
$$

A car (averaging 17.5 miles per gallon) is traveling 50 miles per hour. How many gallons of gas will be used on a trip that lasts 0.75 hours?

$$
|7.5 \mathrm{mi}=g a| \quad 50 \mathrm{mi}=h r
$$

$$
.75 \mathrm{hr} \times \frac{50 \mathrm{~m}^{2}}{\mathrm{hr}} \times \frac{\mathrm{gal}}{17.5 \mathrm{~m}_{4}}=2.1 \mathrm{gal}
$$

At $\$ 3.65$ per gallon, the cost is?

$$
\begin{aligned}
& \$ 3.65=g a l \\
& 2 .\left|g_{a}\right| \times \frac{\$ 3.65}{g_{a i}}=\$ 7.67
\end{aligned}
$$

- two related concepts that you must understand wheh working with measured numbers!

Accuracy

- how close a measured number is to the CORRECT (or "true") value of what you are measuring
- "Is it right?"
- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements

