${ }^{171}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250 . mL of solution.


$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3}: \quad \mathrm{N}: 2 \times 14.01 \\
& \mathrm{H}: 4 \times 1.008 \\
& 0: \frac{3 \times 16.00}{80.052} \mathrm{~g} \mathrm{NH}
\end{aligned}
$$

Find out the nature of the salt: acidic, basic, or neutral?

$$
\begin{array}{rl}
\mathrm{NH}_{4} \mathrm{NO}_{3} & \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}{ }^{-} \\
\mathrm{NO}_{3} & +\mathrm{H}_{2} \mathrm{O}
\end{array} \overbrace{}^{\sim} \mathrm{HNO}_{3}+\mathrm{HH}^{-} \begin{array}{l}
\text { Nitric acid, a STRONG ACID, so } \\
\text { NITRATE ION should be neutral }
\end{array})
$$

$$
\begin{aligned}
& \mathrm{NH}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \mid \mathrm{Ka,NH}_{4}{ }^{+}: \\
& K_{a, \mathrm{NH}_{4}^{+}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3}{ }^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \\
& K_{b, N H y}=1.8 \times 10^{-5}(p A-M 1, \text { text }) \\
& \left(\mathrm{Ka}_{,}, \mathrm{NH}_{4}\right)\left(\mathrm{K}_{6, \mathrm{NH}_{3}}\right)=1.0 \times 10^{-14} \\
& K \mathrm{Ka}_{,} \mathrm{NH}_{4}+=5 . S 6 \times 10^{-10}
\end{aligned}
$$

$$
\mathrm{Ka,NH}_{4}^{+}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3}{ }^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5 . S 6 \times 10^{-10}
$$

Figure out the initial concentratoin of ammonium nitrate

| Species | [Initial] | $\Delta$ | $\left[E_{\text {quilibrium }}\right]$ |
| :--- | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | 0 | $+X$ | $x$ |
| $\mathrm{H}_{3} \mathrm{O}^{+}$ | 0 | $+X$ | $x$ |
| $\mathrm{NH}_{4}{ }^{+}$ | 0.1499 | $-X$ | $0.1494-x$ | | $=0.0374756408 \mathrm{~mol}_{4} \mathrm{NO}_{3} \times \frac{\mathrm{mal}^{2} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.052 \mathrm{gNH}_{4} \mathrm{NH}_{3}}$ |
| :--- |
| Solve: |

Solve:

$$
\begin{aligned}
& \frac{x^{2}}{0.1499-x}=5.56 \times 10^{-10} \\
& \sqrt{4}<60.1499 \\
& \frac{x^{2}}{0.1499}=5.56 \times 10^{-10} \\
& x=\left[430^{4}\right]=9.13 \times 10^{-6} \\
& x H=5.04 \quad \text { This pH seems reasonable for an acidic salt! }
\end{aligned}
$$

THE COMMON-ION EFFECT

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$

From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?

$$
\mathrm{NH}_{4} \mathrm{Cl}(s) \rightarrow \mathrm{NH}_{q}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH ? Let's find out!

Calculate the pH of a solution which contans 0.10 M ammonia AND 0.10 M ammonium chloride.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \rightleftharpoons \mathrm{NH}_{4}{ }^{t}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}
$$

| Species | [Initial] | $\Delta$ | Equilibrium $]$ |
| :--- | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | 0.10 | $-x$ | $0.10-x$ |
| $\mathrm{OH}^{-}$ | 0 | $+X$ | $x$ |
| $\mathrm{NH}^{+}$ | 0.10 | $+x$ | $0.10+x$ |

$$
; \mathrm{h}_{6}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

$$
\begin{gathered}
\frac{(x)(0.10+x)}{(0.10-x)}=1.8 \times 10^{-5} \\
\left(\begin{array}{l}
\text { Assume } x \ll 0.10 \\
0.10-x \approx 0.10 \\
0.10+x \approx 0.10
\end{array}\right. \\
\frac{(x)\{0.10\}}{(0.10)}=1.8 \times 10^{-5}
\end{gathered}
$$

$$
\begin{aligned}
& x=1.8 \times 10^{-5}=[04-] \\
& \mathrm{POH}=4.74 \\
& \mathrm{pH}=9.26
\end{aligned}
$$

The common-ion effect suppresses the ionization of ammonia, LOWERING the pH relative to the original ammonia solution.

- resist pH change caused by either the addition of strong acid/base OR by dilution

Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

(1)Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak $\mathrm{NH}_{3}{ }^{3}$ ase and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text { ) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

$$
\begin{aligned}
& H A+H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

(1) Take log of both sides
(2) Multiply by - 1
(3) Rearrange, solving for pH

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

$\left[\mathrm{A}^{-}\right] \ldots$ from the salt [ HA ] ... from the weak acid

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

$$
p H=p K_{a_{\text {, acidic }}}+\log \left(\frac{\text { [basic species }]}{[\text { acidic species] }]}\right)
$$

ex: acidic buffer

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \mathrm{pH}=\mathrm{pHa}_{, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)
\end{aligned}
$$

ex: basic buffer

$$
\begin{aligned}
& \mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \quad \mathrm{pH}=\mathrm{NK}_{, \mathrm{NH}_{4}+}+\log _{y}\left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}+\right]}\right) \\
& \quad p W_{a}+\rho K_{b}=1 V 1,00 \text {... is the -log of } K_{a} \times V_{b}=K_{w}
\end{aligned}
$$

${ }^{178}$ Calculate the pH of a buffer made from 30.2 grams of ammonium chloride and 29 mL of 18.1 M ammonia diluted to 150 mL , with water.

$$
p H=p K_{a_{\text {, acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{c}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

Acid: $\mathrm{NH}_{4}{ }^{+}$Base: $\mathrm{NH}_{3} ; \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}+$
We need to find the nominal concentrations of both the acid and the base.

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=? \quad M_{1} V_{1}=M_{2} V_{2}} \\
& (18.1 \mathrm{~m})(29 \mathrm{~mL})=M_{2}(150 \mathrm{~mL}) \\
& 3.499 \mathrm{MNH}_{3}=\mathrm{M}_{2} \\
& {\left[\mathrm{NH}_{4}{ }^{+}\right]=?} \\
& \left.30.2 \mathrm{~g} \mathrm{NH} 44 \mathrm{Cl} \times \frac{\mathrm{mal} \mathrm{NH}_{4} \mathrm{Cl}}{53.492 \mathrm{~g} \mathrm{NH}} 4 \mathrm{Cl}\right) \times \frac{}{0.150 \mathrm{~L}}=3.764 \mathrm{M} \mathrm{NH}_{4}+ \\
& \text { M: } 4 \times 1.008 \\
& \mathrm{c}: \frac{1 \times 35.45}{53.492 \mathrm{~g} / \mathrm{mos}} \\
& K b_{1 N H}=1.8 \times 10^{-5} ; p K_{b}=4.74 ; \text { p } r_{n}=14.00-4.74=9.26 \\
& p H=9.26+\log \left(\frac{3.499}{3.764}\right)=9.22
\end{aligned}
$$

## BUFFER SELECTION

- Buffer pH is controlled by the pKa of the acidic species in the buffer.

$$
p H=p K_{a_{\text {,acidil }}}+\log \left(\frac{\text { [basic species. }]}{[\text { acidic species }]}\right)
$$

- Choose a buffer system so that the desired pH is within +/- 1 pH unit of the pKa
- You also need to ensure that the components of the buffer do not interact with your chemistry!


## BUFFER PREPARATION

- many buffers are prepared by mixing specific amounts of both components of the Buffer system (acid / conjugate base or base / conuugate acid)

Some buffer "recipes" call for making the conjugate ion FROM the weak acid or base ... by adding a STRONG acid or base!

$$
\left.\mathrm{NH}_{3}+\mathrm{HNO}_{3}^{2} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}\right] \begin{aligned}
& \text { The reaction of the strong } \\
& \text { acid with the weak base } \\
& \text { goes essentially to } \\
& \text { completion! }
\end{aligned}
$$

If you have more ammonia than nitric acid, you will end up with a solution containing a significant amount of both ammonia and ammonium ion ... a buffer!

