For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

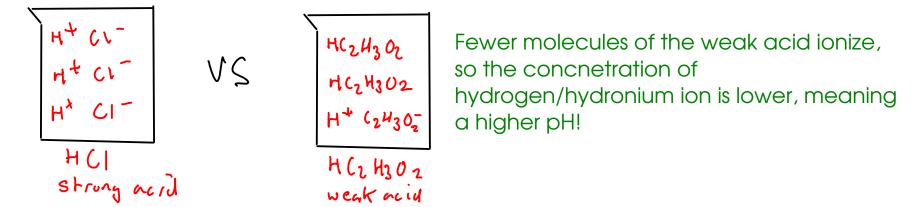
$$HA + H_2 O \rightleftharpoons H_3 O^{+} + A^{-}$$

$$HA + H_2 O \rightleftharpoons H_3 O^{+} + A^{-}$$
Again, water's concentration will
not change significantly, so it is
folded into the ionization constant
ionization
(HA) = concentration of undissociated acid

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$B + H_2 O \rightleftharpoons BH^{+} + OH^{-}$$

$$K_b = \frac{[BH^{+}][OH^{-}]}{[B]}$$
base [B]
onization
constant


Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the appendices, on pages A-13 and A-14

WEAK ELECTROLYTES

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.

- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

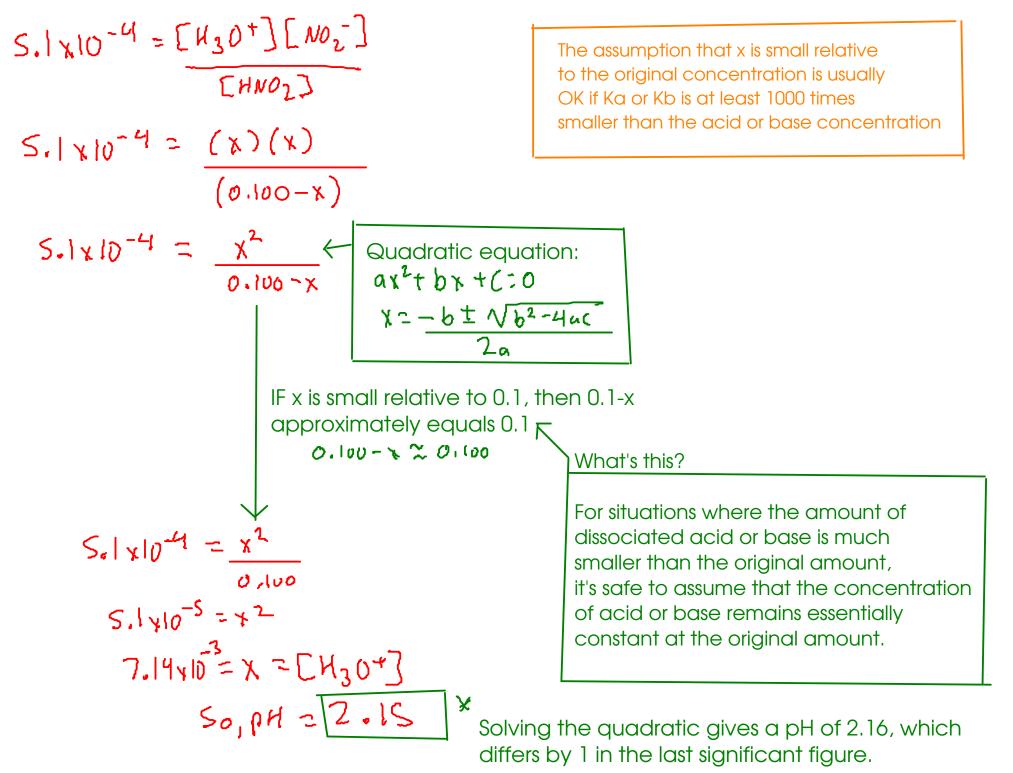
- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100M solution of nitrous acid, a WEAK ACID (HND_2)

$$HNO_{2} + H_{2}O = H_{3}O^{+} + NO_{2}$$

$$K_{\alpha} = \frac{[H_{3}O^{+}][NO_{2}]}{[HNO_{2}]} = 5.1 \times 10^{-4}$$
walle values for Ka are determined experimentally (We look this number up in a table)

What is the pH of the solution?


(We look this number up in a table of acid ionization constants)

To find the pH, we need to determine the concentration of hydronium, $\left[H_{2} O^{t} \right]$

... so we need to solve the equilibrium expression. But we don't know all of the concentrations AT EQUILIBRIUM to do so!

but they AF	RE related!	We assume the amount of hydronium from the water is small enough to ignore		
SPECIES	INITIAL CONC	CHANGE	EQUILIBRIUM CONC	
[H307]	\circ^{\checkmark}	+X	X	
[N02-]	\bigcirc	+ X	X	
[1-1N02]	0,100	-X	O,100-X	

... this is similar to the problems from the equilibrium chapter!

151

•

Compare:

152

- Weak acid HNO_2 : pH of 0.10 M solution = 2.15

Let's compare the pH of the weak nitrous acid with the pH of a stopn acid like nitric acid: 0.10 m H M 2, What is pH?

$$H NO3 + H20 \longrightarrow H30^{+} + NO3^{-}$$

$$O.10 M HNO3, [H30^{+}] = 0.10$$

$$\rho H = 1.00$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared
- to the nominal acid concentration)

¹⁵³ Consider an 0.100 M solution of the weak base ammonia:

What is the pH?

$$VH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

 $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]} = 1.8 \times 10^{-5}$

We need to solve this, but which term are we most interested in?

We want to solve for hydroxide concentation, since it's closely related (and can be easily converted) to pH.

Species	$\left[I_{n_{1}} + i_{n_{n}} \right]$	\bigtriangleup	[Equilibrium]
NHyt	0	$+\chi$	X
0Н-	0	$+\chi$	X
NH3	0,100	~ X	0.100 - x

Plug in to the equilibrium expression:

$$1.6 \times 10^{-S} = \frac{(\chi)(\chi)}{(0.100^{-\chi})} = \frac{\chi'^2}{0.100^{-\chi}}$$

$$1.46 \times 10^{-5} = \frac{\chi^2}{0.100 - \chi}$$
This is a QUADRATIC equation, but like the acid example,
x is small compared to 0.100.

$$0.100 - \chi \approx 0.100$$

$$1.8 \times 10^{-5} = \frac{\chi^2}{0.00}$$
This is HYDROXIDE concentration, not
$$\chi = 0.0013416404 = [0H^2]$$
HYDRONIUM. Be careful here!
$$0H = -109_{10}(0.0013416404) = 2.87$$

$$H = 14.00 - 2.87$$

$$H = 14.00 - 2.87$$

$$H = 14.00 - 2.87$$

$$H = 11.13$$

$$K$$
If you had solved this by the quadratic equation, you would have obtained a pH of 11.13. (No difference to two significant figures!)

Compare pH to the pH of an 0.100 M solution of the strong base NaOH: $PM_{INH_3} = 11.13$ $NaOH \rightarrow Na^{+} = 0H^{-}$ $S_{0} = 0.100 \text{ M NaOH has} = [04^{-}] = 0.100$ $POH = -log_{10}(.100) = 1.00$ PH = 14.00 - 1.00 = 13.00

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal bas concentration)