$$
\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{PC} \mathrm{I}_{\delta}(g) \quad \mathrm{K}_{\mathrm{c}}=49
$$

If you add 0.400 moles of each reactant to a 4.00 L reaction vessel, what is the composition of the equilibrium mixture?

Initial conditions

Species	[Initial]	Δ	[Equilibrium]
PCl_{3}	$\frac{0.400 \mathrm{~mol}}{4.00 \mathrm{~m}}=0.100 \mathrm{M}$	$-x$	$0.100-x$
Cl_{2}	$\frac{0.400 \mathrm{~mol}}{4.00 \mathrm{~L}}=0.100 \mathrm{M}$	$-x$	$0.100-x$
PCl_{s}	$O \mathrm{M}$	$+x$	x

We've defined 'x' as the concentration of phosphorus trichloride consumed.

$$
\frac{\left[P C_{S}\right]}{\left[P l_{3}\right]\left[C_{2}\right]}=\frac{(x)}{(0.100-x)(0.100-x)}=49
$$

To solve this problem, we need to solve this expression for ' x '.

Rearrange this expression to make it easier to solve. Isolate 'x' if possible.

120
$\frac{(x)}{(0.100-x)(0.100-x)}=49$

$$
\frac{x}{(0.100-x)^{2}}=49
$$

$$
x=49(0.100-x)^{2}
$$

$$
x=44(0.100-x)=a^{2}-2 a b+b^{2}
$$

$$
x=49\left(0.0100-0.200 x+x^{2}\right)
$$

This equation is a QUADRATIC EQUATION:

$$
\frac{a x^{2}+b x+c=0}{x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}}
$$

Each quadratic equation has TWO solutions. However, only ONE of the two solutions makes chemical sense!

$$
x=0.49-9.8 x+49 x^{2}
$$

$$
0=49 x^{2}-10.8 x+0.49
$$

$$
a=49 \quad b=-10.8 \quad c=0.49
$$

$$
\begin{aligned}
& x=\frac{10.8 \pm \sqrt{(-10.8)^{2}-4(49)(0.49)}}{2(49)}=\frac{10.8 \pm \sqrt{20.6}}{98} \\
& x=0.870 .0639
\end{aligned}
$$

This value for ' x ' results in negative concentrations for both phosphorus trichloride and chlorine gas at equilibrium. Since this is impossible, we must discard this solution!

121

Species	[Initial]	Δ	$\left[E_{q \text { quilibrium }}\right]$
$P_{1} l_{3}$	$\frac{0.400 \mathrm{~mol}}{4.00 L}=0.100 \mathrm{M}$	$-X$	$0.100 \sim x$
C_{12}	$\frac{0.400 \mathrm{~mol}}{4.00 \mathrm{~L}}=0.100 \mathrm{M}$	$-X$	$0.100-x$
PCl_{5}	$O M$	$+X$	X

$$
\begin{aligned}
& X=0.0639 \mathrm{~m} \\
& {\left[P C l_{3}\right]=0.100-0.0639=0.0361 \mathrm{M} \times 4.00 \mathrm{~L}=0.144 \mathrm{~mol} \mathrm{PCl}_{3}} \\
& {\left[\mathrm{Cl}_{2}\right]=0.100-0.0639=0.0361 \mathrm{M} \times 4.00 \mathrm{~L}=0.144 \mathrm{~mol} \mathrm{Cl} 2} \\
& {[\mathrm{PCl}]=0.0639=0.0639 \mathrm{M} \times 4.00 \mathrm{~L}=0.256 \mathrm{~mol} \mathrm{PCl} / \mathrm{s}}
\end{aligned}
$$

Quick comparison of initial and final states

| 0.400 mol PCl_{3} |
| :---: | :---: |
| 0.400 mol Cl |
| 0 mol PCl_{5} |\quad| $0.144 \mathrm{~mol} \mathrm{PCl}_{3}$ |
| :--- |
| $0.144 \mathrm{~mol} \mathrm{Cl}_{2}$ |
| 0.256 mol PCls |

${ }^{122}$ An 8.00 L reaction vessel at 3900 C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of all species at equilibrium.

$$
\begin{gathered}
N_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) K_{c}=0.0123 \\
K_{c}=0.0123=\frac{\left[\mathrm{NO}^{2}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} \left\lvert\, \begin{array}{l}
\text { We need to express all of these concentrations } \\
\text { in terms of a single variable. }
\end{array}\right.
\end{gathered}
$$

Species	[Initial]	Δ	$\left[E_{\text {quilibrivm }}\right]$
N_{2}	$\frac{0.850 \mathrm{~mol}}{8.00 \mathrm{~L}}=0.10625 \mathrm{M}$	$-x$	$0.10625-x$
O_{2}	$\frac{0.85 \mathrm{~mol}}{8.00 \mathrm{~L}}=0.10625 \mathrm{M}$	$-x$	$0.10625-x$
NO	O	$+2 x$	$2 x$

Let ' x ' be the change in concentration of nitrogen gas.

$$
\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=\frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)}=0.0123
$$

We need to solve the above expression for 'x' to continue.

123

$$
\begin{aligned}
& \frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)}=0.0123 \\
& \sqrt{\frac{(2 x)^{2}}{(0.10625-x)^{2}}}=\sqrt{0.0123} \quad \begin{array}{l}
\text { Solve with quadratic OR } \\
\text { simplify by taking square root } \\
\text { of both sides! }
\end{array} \\
& \frac{2 x}{0.10625-x}=0.1109053651 \\
& 2 x=0.011783695-0.1109053651 x \\
& 2.1109053651 x=0.011783695 \\
& x=0.0055822943
\end{aligned}
$$

Now, use ' x ' to calculate equilibrium concentrations:

$$
\begin{aligned}
& {\left[N_{2}\right]=0.10625-x=0.101 \mathrm{~m}} \\
& {\left[O_{2}\right]=0.10625-x=0.101 \mathrm{~m}} \\
& {\left[\mathrm{~N}_{0}\right]=2 x=0.0112 \mathrm{~m}}
\end{aligned}
$$

We know Kc = 0.0123 (small), so we expect

Species	[Equilibrium]
N_{2}	$0.10625-x$
O_{2}	$0.10625-x$
$N O$	$2 x$

