$$P(I_3(g) + (I_2(g) \rightleftharpoons P(I_s(g)) K_{L^2} 49)$$

If you add 0.400 moles of each reactant to a 4.00 L reaction vessel, what is the composition of the equilibrium mixture?

Start with equilibrium expression:

 $K_{c} = \frac{EPCI_{s}]}{EPCI_{s}]ECI_{2}} = 49$

These concentrations are molar concentrations AT EQUILIBRIUM!

Initial conditions

Species	[Initial]		Δ	[Equilibrium]		We've defined 'x' as the concentration
PC13	0.400 mol = 0.100 M		- X	0.100-X		of phosphorus trichloride consumed.
C12	$\frac{0.400 \text{mol}}{4.00 \text{L}} = 0.100 \text{M}$		- X	0,100-%		
PCIS	ΟM		+ X	×		
EPCIS]	= [[[]]	(X) (0.100-X))(0.100-*)	-=49)	To solve t to solve t	this problem, we need his expression for 'x'.

Rearrange this expression to make it easier to solve. Isolate 'x' if possible.

$$\frac{1}{(0,100-x)(0,100-x)} = 49$$

$$\frac{x}{(0,100-x)^{2}} = \frac{10}{2a}$$
This equation is a QUADRATIC EQUATION:

$$a x^{2} + b x + c = 0$$

$$\frac{x}{2a}$$
Each quadratic equation has TWO solutions. However, only ONE of the two solutions makes chemical sense!

$$x = 49 (0.0100 - 0.200x + x^{2})$$

$$x = 0.49 - 9.8x + 49 x^{2}$$

$$0 = 49 x^{2} - 10.8 x + 0.49$$

$$a = 49 \quad b = -10.8 \quad c = 0.49$$

$$x = \frac{10.8 \pm \sqrt{(-10.8)^{2} - 4(49)(0.49)}}{2(49)} = \frac{10.8 \pm \sqrt{20.6}}{98}$$

This value for 'x' results in negative concentrations for both phosphorus trichloride and chlorine gas at equilibrium. Since this is impossible, we must discard this solution!

Species	[Initial]	Δ	[Equilibrium]	
PC13	0.400 mol 4.00 L = 0.100 M	-x	0.100-X	
(12	0.400 mol = 0,100 M	~ X	0,100-%	
PCIs	ΟM	+ χ	×	

X = 0.0639 MEquilibrium
concentrationsNumber of moles of
each substance $[PC1_3] = 0.100 - 0.0639 = 0.036| M$ $x.4.00L = 0.144 \text{ mol} PCl_3$ $[C1_2] = 0.100 - 0.0639 = 0.036| M$ $x.4.00L = 0.144 \text{ mol} Cl_2$ $[C1_2] = 0.100 - 0.0639 = 0.036| M$ $x.4.00L = 0.144 \text{ mol} Cl_2$ $[C1_2] = 0.100 - 0.0639 = 0.036| M$ $x.4.00L = 0.144 \text{ mol} Cl_2$ $[C1_2] = 0.0639 = 0.0639 = 0.0639 M$ $x.4.00L = 0.256 \text{ mol} PCl_3$

Quick comparison of initial and final states

 ¹²² An 8.00 L reaction vessel at 3900C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of all species at equilibrium.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g) K_c = 0.0123$$

$K_c = 0$	$.0123 = [N0]^{2}$ $[N_{2}][0_{2}]$	We ne in term	ed to express all of is of a single variabl	these concentrations le.
Species	[Initial]	Δ	[Equilibrium]	Let 'x' be the change in
N2	0.850 mol = 0.10625 M	$-\times$	0.10625-x	nitrogen gas.
02	0.850 mol = 0.10625 M	- X	0.10625-4	
NO	\bigcirc	+2x	2 x	

$$\frac{[NO]^{2}}{[N_{2}][O_{2}]} = \frac{(2x)^{2}}{(0.1062S - x)(0.1062S - x)} = 0.0123$$

We need to solve the above expression for 'x' to continue.

 $(2x)^{2}$ = 0,0123 (0.1062S-x)(0.1062S-x) $\frac{(2x)^{2}}{(2x)^{2}} = \sqrt{0.0123}$ simolify by taking square root of both sides!

Solve with quadratic OR

$$\frac{2x}{0.10625 - x} = 0.1109053651$$

2x = 0.011783695 - 0.1109053651x

2.1109053651x=0.011783695 x=0,0055822943

Now, use 'x' to calculate equilibrium concentrations: [N1] = 0-10625-X = 0.101 M $[0_2] = 0.10625 - x = 0.101 M$

[No]= 2x= 0.0112M

We know Kc = 0.0123 (small), so we expect reactants to dominate at equilibrium. (They do!)

Species	[Equilibrium]
N2	0.10625-4
02	0.10625-x
NO	2.x