* You will measure the VOLUME of oxygen produced in the experiment by measuring the volume of WATER displaced by the oxygen. This causes a problem for us; some of the water vaporizes and mixes with the oxygen.
* So, the gas that displaces water is a mizture of oxygen and water vapor. We can correct for this by modifying the PRESSURE of the gas, subtracting out the pressure due to water vapor - which depends on the temperature of the gas.. This correction uses DALTON'S LAW OF PARTIAL PRESSURES (Section 5.5 in the textbook)

Example: In an apparatus similar to that used in today's experiment, you collect 675 mL of gas over water at a temperature of 27.0 C and a pressure of 29.92 in Hg . Calculate the moles of oxygen gas collected.

Use the ideal gas equation, solved for ' n ':

$$
\left.\begin{array}{ll|}
n=\frac{P V}{R T} & V=675 \mathrm{~mL}=0.67 \mathrm{SL}
\end{array} \quad \begin{aligned}
& \text { Units for } P, V, T \text { must } \\
& \text { match units for } R
\end{aligned} \right\rvert\,
$$

So, before we can calculate ' n ', we need to correct the pressure term.

Using the chart on page 118 of the lab manual, we find that the vapor pressure (pressure over a liquid surface) of water vapor is 26.7 mm Hg at 27.0 C . The total pressure of the gas equals the pressure of the oxygen PLUS the pressure of the water vapor.

$$
\begin{aligned}
& P_{\text {TOT }}=P_{\mathrm{O}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}} \\
& P_{\text {TUT }}=29.92 \mathrm{in} \mathrm{H}_{g}=760.0 \mathrm{mmHg} \quad\binom{\text { Factor: }}{\text { in } \mathrm{Hg}_{\mathrm{g}}=25.4 \mathrm{~mm} \mathrm{Hg}} \\
& 760.0 \mathrm{~mm} \mathrm{Hg}=\mathrm{PO}_{2}+26.7 \mathrm{~mm} \mathrm{Hg} \\
& P_{o_{2}}=733.3 \mathrm{~mm} \mathrm{Hg} \leftarrow \text { Use THIS pressure to find moles of oxygen! }
\end{aligned}
$$

Now, let's solve the ideal gas equation.

$$
\begin{aligned}
& n=\frac{P V}{R T} \quad \begin{array}{l}
V=0.675 \mathrm{~L} \\
R=0.08206 \frac{\text { Loam }}{\text { mol.K }}
\end{array} \\
& \begin{array}{l}
T=300.2 \mathrm{~K} \\
P=733.3 \mathrm{~mm} \mathrm{Hg}=0.9649 \mathrm{~atm}
\end{array}\binom{\text { Factor: }}{a+m=760 \mathrm{~mm} \mathrm{Hg}} \\
& n=\frac{(0.9649 \mathrm{~atm})(0.67 \mathrm{SL})}{\left(0.08206 \frac{\mathrm{hatm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(300.2 \mathrm{k})}=0.0264 \mathrm{~mol} \mathrm{O} 2
\end{aligned}
$$

