$$
4 \underset{\substack{42.081 \\ \text { propylene }}}{4 \mathrm{C}_{6} \mathrm{mul}}+6 \mathrm{NO} \longrightarrow \underset{\substack{\text { acrylonitrile }}}{\mathrm{C}_{3}^{\mathrm{S}} \mathrm{H}_{3} \mathrm{~N}+664 \mathrm{H}_{2} \mathrm{O}}+\mathrm{N}_{2}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present.
1 - Convert mass propylene to moles using formula weight (and metric prefix kilo-)
2 - Convert moles propylene to moles acrylonitrile using chemical equation
3 - Convert moles acrylonitrile to grams using formula weight.

| $42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\operatorname{mol} \mathrm{C}_{3} \mathrm{H}_{6}$ | $\mathrm{Kg}=10^{3} \mathrm{~g}$ | $4 \mathrm{mul} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ |
| :--- | :--- | :--- |
| $53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\operatorname{mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ |  |  |

$$
\begin{gathered}
6 \mathrm{Si} \mathrm{FgC}_{3} \mathrm{H}_{6} \times \frac{10^{3} \mathrm{~g}}{\mathrm{Kg}} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.081 \mathrm{~g}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{mul} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{\mathrm{S}_{3} .064 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}= \\
\text { (2) (2) }
\end{gathered}
$$

$$
=821000 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}
$$

$110 \mathrm{IS} 1.90 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow & \mathrm{Se}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
& +8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert mass of iron(II) sulfate to moles using formula weight.
2 - Convert moles iron(II) sulfate to moles potassium permangenate using chemical equation
3 - Convert moles potassium permangenate to volume using concentration ( 0.250 M )

| $1 \mathrm{Sl} .9 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4}$ | $10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{mal} \mathrm{KMnO}_{4}$ | $0.2 \mathrm{SO}_{\mathrm{mol}} \mathrm{KMnO}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{mL}=10^{-3} \mathrm{~L}$ |  | $L$ |

$$
\begin{align*}
& \text { (3) }  \tag{1}\\
& =17.7 \mathrm{~mL}\left(0 f 0.250 \mathrm{MrmnO}_{4}\right) \tag{2}
\end{align*}
$$

