${ }^{148}$ Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

* Volume of a 10'x10'x8'

1 - Convert volume of oxygen gas to moles using ideal gas equation room
2 - Convert moles oxygen gas to mass using formula weight.

$$
\begin{array}{l|ll}
\hline P V=n R T & P=1.18 \text { atm } & T=25.00^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
\frac{P V}{R T}=n & V=22650 \mathrm{~L} & n=? \mathrm{~mol} \mathrm{O} \\
& R=0.08206 \frac{\mathrm{Loatm}}{\text { mol oh }} &
\end{array}
$$

(1) $n_{O_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{mul} \cdot \mathrm{h}}\right)(298.2 \mathrm{k})}=1092.222357 \mathrm{~mol} \mathrm{O}$ $32.00 \mathrm{gO}_{2}=\mathrm{mol} \mathrm{O}$
(2)

$$
1092.222357 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}}=35000 \mathrm{~g} \mathrm{O}_{2} \quad 35.0 \mathrm{~kg}
$$

149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?
We need to find out M of HCl: $\quad M_{\mathrm{HCl}}=\frac{\mathrm{mol} \mathrm{HCl}}{\mathrm{LHCl} \text { solution }} \leftarrow 48.90 \mathrm{~mL}=0.04890 \mathrm{~L}$
1 - Convert 125.0 mL of carbon dioxide gas to moles using ideal gas equation.
2 - Convert moles carbon dioxide to moles HCl using chemical equation.
3 - Calculate molarity of HCl using the moles HCl and the volume.
(1)

$$
2 \operatorname{mol} \mathrm{HCl}=\operatorname{mol} \mathrm{CO}_{2}
$$

(2) $0.0049866019 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{mol} \mathrm{CO}}=0.0099732038 \mathrm{~mol} \mathrm{HCl}$
(3) $M_{\mathrm{HCl}}=\frac{\mathrm{mol} \mathrm{HCl}}{\mathrm{LHCl} \text { solution }}=\frac{0.0099732038 \mathrm{~mol} \mathrm{HCl}}{0.04890 \mathrm{~L}}=0.204 \mathrm{MHCl}$

$$
\begin{aligned}
& \begin{array}{l|l}
n=\frac{P V}{R T} & P=0.950 \mathrm{arm} \\
V=125.0 \mathrm{~mL}=0.1250 \mathrm{~L}
\end{array} \\
& R=0.08206 \frac{\text { lachtm }}{\text { mol.ht }} \\
& n_{\mathrm{CO}_{2}}=\frac{(0.950 \mathrm{arm})(0.125 \mathrm{LL})}{\left(0.08206 \frac{\mathrm{Lachm}}{\mathrm{molh}}\right)(290.2 \mathrm{~K})}=0.0049866019 \mathrm{~mol} \mathrm{CO}_{2}
\end{aligned}
$$

Here are the sample exchange reactions we did in class for review today:

NO REACTION
\qquad
No reaction here, since both "products" are soluble ionic compounds (which exist in water as separate ions - just like before the "reaction"!)

$$
\begin{aligned}
& \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{mq})+3 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow 3 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{~s}) \\
& \mathrm{Na}^{+} \mathrm{PO}_{4}^{3-} \mathrm{Aa}^{+} \mathrm{NO}_{3}^{-}
\end{aligned}
$$

Formation of the solid silver (I) phosphate drives this reaction.

