A review of the reaction types we just mentioned:

COMBINATION REACTIONS

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_{2}O_{2}(\ell) \longrightarrow 2 H_{2}O(\ell) + O_{2}(g)$$

- * This reaction is NOT a combustion reaction, even though O_2 is involved!
- * Combustion reactions CONSUME O₂, while this reaction PRODUCES O₂

(3) COMBUSTION REACTIONS

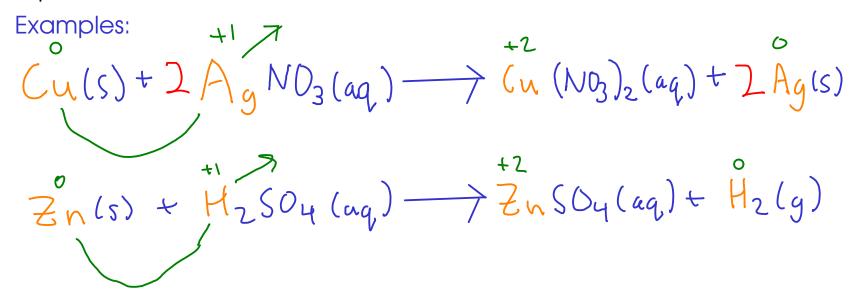
- Reactions of substances with MOLECULAR OXYGEN (O_2) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form: $AB + O_{2} \rightarrow AO + BO$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!


This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (p151, 9th edition)

- Easy to spot, since there is an element "by itself" on each side of the equation.

REDOX LANGUAGE

"oxidizer"

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.
- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.

$$2A(s) + 3Br_2(l) \rightarrow 2A(Br_3(s))$$

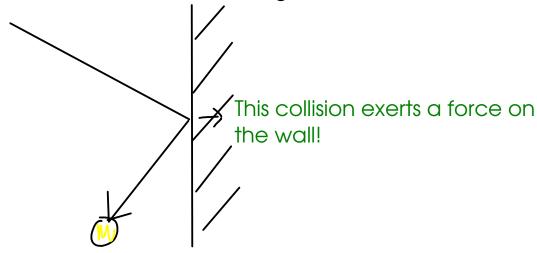
Aluminum is OXIDIZED during this process. We say that metallic aluminum is a REDUCING AGENT!

Bromine is REDUCED during this process. We say that bromine is an OXIDIZING AGENT!

- * Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).
 - * Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS

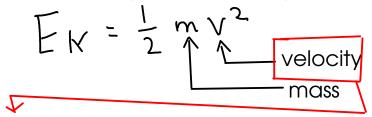
END OF CHAPTER 4 MATERIAL

- Gases differ from the other two phases of matter in many ways:
 - They have very low viscosity (resistance to flow), so they flow from one place to another very easily.
 - They will take the volume of their container. In other words, gas volumes are variable.
 - They are the least dense of all three phases.
 - Most gases are transparent, and many are invisible. thermal expansion!
 - Gases show a much larger change of volume on heating or cooling than the other phases.
 - Gases react to changes in temperature and pressure in a very similar way. This reaction often does not depend on what the gas is actually made of.


KINETIC THEORY

- is a way to explain the behavior of gases.
- views the properties of gases as arising from them being molecules in motion.

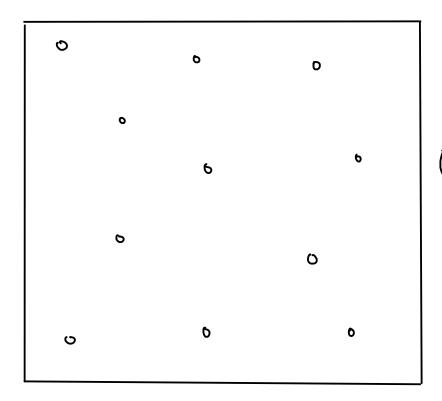
- Pressure: force per unit area. Units: Pascal, bar, mm Hg, in Hg, atm, etc.



- According to kinetic theory, pressure is caused by collisions of gas molecules with each other and the walls of the container the gas is in.

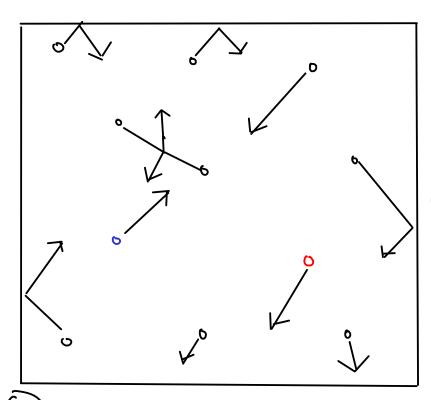
136- Temperature:

- a measure of the average kinetic energy of the molecules of the gas



- The faster the gas molecules move, the higher the temperature!
- The temperature scales used when working with gases are ABSOLUTE scales.
 - ABSOLUTE: scales which have no values less than zero.

- KELVIN: metric absolute temperature scale.


- NELVI					in. The hic absolute temperature scale	
		Quick comparison of emperature scales!		K=273.15+°C		
		212	100	373	Water boils	
		77	25	298	Room temperature	
		32	O	273	Water freezes	
		-460	-273	0	Absolute zero!	
		OF	° (K		

THE KINETIC PICTURE OF GASES

Gas molecules are small compared to the space between the gas molecules!

LOW DENSITY!

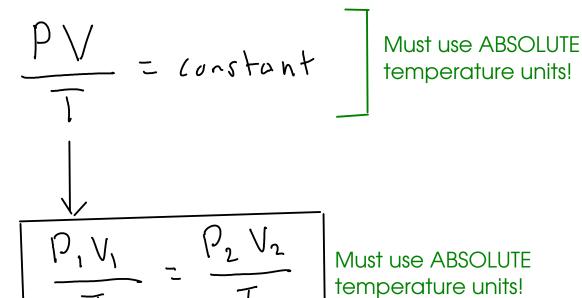
- Gas molecules are constantly in motion. They move in straight lines in random directions and with various speeds.
- Attractive and repulsive forces between gas molecules are so small that they can be neglected except in a collision.
 - Each gas molecule behaves independently of the others.
- Collisions between gas molecules and each other or the walls are ELASTIC.
- $\left(\mathcal{S}\right)$ The average kinetic energy of gas molecules is proportional to the absolute temperature.

How does this picture explain the properties of gases?

- Gases expanding to fill their container? Agrees with kinetic picture, since gas molecules are independent
- Thermal expansion of gas at constant pressure? Agrees, because the container has to EXPAND to keep the pressure (from collisions) constant when the gas molecules move faster.
- Pressure increases with temperature at constant volume: Agrees, because the number and force of collisions increases with molecular speed.

GAS LAWS

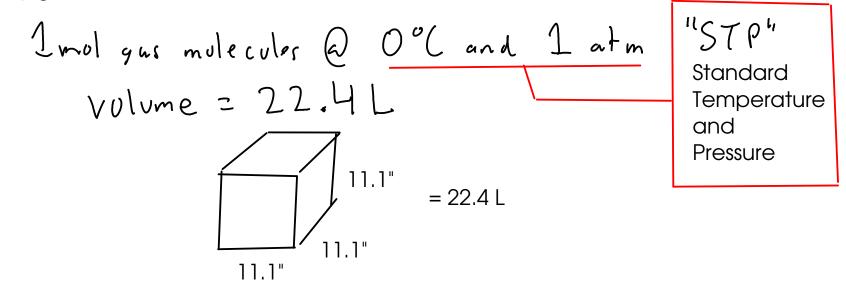
- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

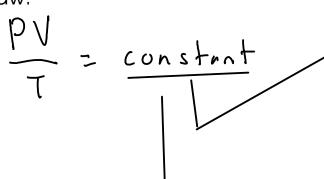

Boyle's Law:

$$P_1V_1 = constant$$

$$P_2V_2 = constant$$

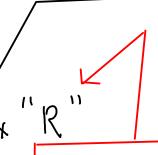
$$P_1V_1 = P_2V_2$$
True at constant temperature


Charles's Law:


Avogadro's law:

amount (moles) of gas must be constant,

- a mole of any gas at the same conditions has the same volume.



Ideal gas law:

but this constant actually depends on the amount

of gas!

The ideal gas constant.

... combining these together ...

$$P = pressure at m$$

V = volume L

T = ABSOLUTE temperature k

R = ideal gas constant

n = number of moles of gas molecules