(1) Count valence electrons
(2) Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons!
- skeletal structure has all atoms connected to center with single bonds
(3) Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.

Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.

A DOT STRUCTURE FOR A LARGER MOLECULE
(1) Count valence electrons
(2) Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons!
- skeletal structure has all atoms connected to center with single bonds
(3)

Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.
(4) Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.

This molecule has THREE centers!

$C 2 \times 4=8$
$H 6 \times 1=6$
$0 G=6$
20 electrons

$$
\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O} \rightarrow \mathrm{H} \text { the oXYGEN atom, since the } \begin{aligned}
& \text { hydrogen and carbons already } \\
& \text { I } \\
& \mathrm{H}
\end{aligned}
$$

WATER

$$
1-1-0_{0}^{\infty}-1
$$

The ALCOHOLS (like ethanol, methanol, and isopropanol) are similar in structure to WATER. Small-molecule alcohols all dissolve very well in water due to this similarity!

A DOT STRUCTURE FOR A POLYATOMIC ION
(1) Count valence electrons
(2) Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons!
- skeletal structure has all atoms connected to center with single bonds
(3) Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.
(4) Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.

```
NH4+
N:S
H: I X4 ammonium ion has to have
                                    LOST one of its valence electrons, so we subtract one electron from the total.
Selectrons
\(H\)
1
\[
H-N-H
\]
I
\[
H
\]
```

$$
\left[\begin{array}{c}
H \\
H \\
1 \\
-N-H \\
1 \\
H
\end{array}\right]
$$

We typically draw bracets around the structure of polyatomic ions and indicate the charge in the upper right (just like we'd do for a single-atom ion)

PREDICTING MOLECULAR SHAPE

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model

VSEPR = Valence Shell Electron Pair Repulsion Model

- Each BOND or LONE PAIR OF ELECTRONS around an atom will try to move itself as far away from other bonds or lone pairs as possible!

For the two red circles to be farthest apart, they must be 180 degrees apart

LINEAR
MOLECULES

ANY diatomic (two-atom) molecule is linear, but only some three-atom molecules are!

For the three red circles to be farthest apart, they spread out so that each is 120
degrees from the others!

TRIGONAL
PLANAR
MOLECULES

These hydrogen atoms might appear at first glance to be 90 degrees apart, but remember that molecules exist in THREE DIMENSIONS, not two!

Each hydrogen atom is actually 109.5 degrees apart, forming a TETRAHEDRON.

To see the tetrahedron in three dimensions WITHOUT buying a molecular model kit, just take four balloons, blow them up, and then tie them together. The knot will be the central atom, and the balloons will line themselves up to be 109.5 degrees apart.

Here's a computer ball-and-stick rendering of the methane molecule.

- What if there are lone pairs? The way the shape of a molecule is described depends on the ATOMS in the molecule, even though lone pairs play a role in the positions of the atoms.

190
Since there are four "things" around the oxygen atom, we would expect them to be approximately 109.5 degrees apart (in other words, TETRAHEDRAL). BUT... only two of these things are atoms.
H The atoms are all in a single plane, but they are not lined up in a straight line. We call this shape "BENT".

- Atoms are in one plane live CO_{2}, but bent instead 'of linear!'

H We sometimes draw the Lewis structure of water this way to emphasize the "bent" nature of the molecule!
H
Notice that this molecule has two "sides", one with the oxygen atom and one with hydrogen atoms.

$\mathrm{H}_{2} \mathrm{O}$

