Problem 6.59, page 257

$$
4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \xrightarrow{(g)} 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) ; \Delta H=-1267 \mathrm{WT}
$$

Calculate the enthalpy change on burning 35.8 g ammonia in the above reaction.
1 - Find moles of ammonia. Use formula weight of ammonia
2 - Change moles of ammonia to enthalpy. Use thermochemical equation.

$$
\begin{aligned}
\text { NH }_{3}: \quad N:\{\times 14.01 \\
H: \frac{3 \times 1.008}{17.034 \mathrm{~g}} / \mathrm{NH}_{3}=\operatorname{mos} \mathrm{NH}_{3}
\end{aligned}
$$

$$
4_{\text {mo }} \mathrm{NH}_{3}=-1267 \mathrm{~kJ}
$$

$$
35.8 \mathrm{~g} \mathrm{NH}_{3} \times \frac{\mathrm{mol} \mathrm{HH}_{3}}{17.03 \mathrm{~g} \mathrm{NH}_{3}} \times \frac{-1267 \mathrm{~kJ}}{4 \mathrm{~mol} \mathrm{NH}} 33
$$

