${ }^{142}$ REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.
- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.
- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?
- at high pressure, molecules would be much closer together!
- When would it be FALSE that attractive and repulsive forces would be negligible?
- at high pressure, attractions and repulsions should be stronger!
- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules
fast (high T)
slow (low T)

-The gas laws are highly inaccurate near the point where a gas changes to liquid!
- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.
${ }^{143}$ van der Waal equation
- an attempt to modify PV = nR to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T \text { Ideal gas equation } \\
& \left.\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T\right] \begin{array}{l}
\text { van der Waal } \\
\text { equation }
\end{array} \\
& \text { attempts to account for molecular size }
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. p 211
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: a=12.56 \quad b=0,08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$
${ }^{144} 25 \overline{0} 0 \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500L of chlorine gas to moles. Use ideal gas equation.
2 - Convert moles chlorine gas to moles hydrochloric acid using chemical equation
3 - Convert moles hydrochloric acid to mass using formula weight

$$
\begin{array}{l|ll}
\hline P V=n R T & P=1.00 \text { atm } & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \quad n=? \mathrm{~mol} \\
n=\frac{P V}{R T} & R=0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}} & V=2500 \mathrm{~L}
\end{array}
$$

(1) $n_{C l_{2}}=\frac{(1.00 \mathrm{arm})(2 S 00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L}-\mathrm{arm}}{\mathrm{mol}_{\mathrm{K}}}\right)(298.2 \mathrm{~K})}=102.1646983 \mathrm{~mol} \mathrm{Cl} 2$

$$
\begin{aligned}
& \operatorname{mot} \mathrm{Cl}_{2}=2 \operatorname{mol} \mathrm{HCl}|36.458 \mathrm{~g} \mathrm{HCS}=\operatorname{mol} \mathrm{HCl}| \mathrm{Kg}=10^{3} \mathrm{~g} \\
& 102.1646983 \mathrm{~mol} \mathrm{Cl} 2 \times \frac{2 \operatorname{mol~HCl}}{\operatorname{mot~Cl}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\operatorname{molHCl}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=7.45 \mathrm{~kg} \mathrm{HCl}
\end{aligned}
$$

${ }^{145}$ Calculate the mass of 22650 L' * of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

*Volume of a $10{ }^{\prime} \times 10^{\prime} \times 8^{\prime}$ room
1 - Convert volume of oxygen gas to moles using ideal gas equation
2 - Convert moles oxygen gas to mass using formula weight.

$$
\begin{aligned}
& P V=n R T \quad P=1.18 \text { atm } \quad n=\text { ? mol } \\
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
V=22650 \mathrm{~L} \\
R=0.08206 \frac{\mathrm{~L}-\text { atm }}{\mathrm{mol} \cdot \mathrm{~K}}
\end{array}\right. \\
& T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& \text { (1) } n_{\mathrm{o}_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~K})}=1092.222357 \mathrm{~mol} \mathrm{O}_{2}
\end{aligned}
$$

(2) $32.0 \mathrm{~g} \mathrm{O}_{2}=\mathrm{mol} \mathrm{O}$

