${ }^{144} 25 \overline{0} 0 \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500L of chlorine gas to moles using ideal gas equation
2 - Convert moles chlorine gas to moles hydrochloric acid using chemical equation
3 - Convert moles hydrochloric acid to mass using formula weight

$$
\begin{aligned}
& \text { (1) } P V=n R T \quad P=1.00 \mathrm{~atm} \quad R=0.08206 \frac{\mathrm{Loatm}}{\mathrm{~mol} \cdot \mathrm{KK}} \\
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
V=2500 \mathrm{~L} \\
n=? \operatorname{mol~Cl}
\end{array} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}\right. \\
& n_{\mathrm{Cl}_{2}}=\frac{(1.00 \mathrm{arm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Loatm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~K})}=102.1646983 \mathrm{~mol} \mathrm{Cl} 2 \\
& \text { mol } \mathrm{Ci} 2=2 \text { mol } \mathrm{HCl} \mid 36.458 \mathrm{~g} \mathrm{HCl}=\mathrm{mos} \mathrm{HCl} \quad \mathrm{Kg}=10^{3} \mathrm{~g} \\
& \begin{array}{l}
102.1646983 \mathrm{~mol} \mathrm{Cl} \\
2 \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Cl}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{Kg}}{10^{3} \mathrm{~g}}=7.45 \mathrm{~kg} \mathrm{HCl} \\
\text { (2) } 1 \text { (3) }
\end{array}
\end{aligned}
$$

145 Calculate the mass of $226 \stackrel{*}{50} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

* Volume of a 10'x10'x8'

1 - Convert volume of oxygen gas to moles using ideal gas equation room

2 - Convert moles oxygen gas to mass using formula weight

$P V=n R T$	$P=1.18$ atm	$T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}$
$n=\frac{P V}{R T}$	$V=22650 \mathrm{~L}$	$n=? \mathrm{~mol} \mathrm{O}$
	$R=0.08206 \frac{\mathrm{Loatm}}{\mathrm{mos} \cdot \mathrm{K}}$	

(1) $\left.n_{O_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~m})}{\left(0.08206 \frac{2 \cdot a t m}{\mathrm{mos} \cdot \mathrm{K}}\right)(298.2 \mathrm{~K})}=1092.22235\right) \mathrm{mol} \mathrm{O}_{2}$
$32.00 \mathrm{yO}_{2}=\mathrm{mol} \mathrm{O} 2$

$$
1092.222357 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{gO}_{2}}{\mathrm{~mol} \mathrm{O}}=35000 \mathrm{gO} 2 \quad \begin{aligned}
& 35.0 \mathrm{bg} \\
& 7716
\end{aligned}
$$

146

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?
We need to find out M of HCl :

$$
M_{\mathrm{HCl}}=\frac{\text { mol HCl }}{\mathrm{LHCl} \text { solution }} \leftarrow 48.90 \mathrm{~mL} \text { or } 0.04890 \mathrm{~L}
$$

1 - Convert 125.0 mL of carbon dioxide gas to moles using ideal gas equation
2 - Convert mol carbon dioxide to mol hydrochloric acid using chemical equation
3 - Divide moles $\mathrm{HCl} / 0.04890 \mathrm{~L}$ to get molarity
(b)

$$
\begin{array}{ll}
B=\frac{P V}{R T} \left\lvert\, \begin{array}{ll}
P=0.950 \mathrm{~atm} & R=0.08206 \frac{\mathrm{Latm}}{\mathrm{mos} \cdot \mathrm{~K}} \quad n=? \mathrm{mul} \mathrm{CO} \\
V=125.0 \mathrm{~mL}=0.1250 \mathrm{~L} & T=290.2 \mathrm{~K}
\end{array}\right. \\
n_{\mathrm{CO}_{2}}=\frac{(0.950 \mathrm{~atm})(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{LaH} \mathrm{Hm}}{\mathrm{mos} \cdot \mathrm{~K}}\right)(290.2 \mathrm{~K})}=0.0049866019 \mathrm{~mol}\left(\mathrm{CO}_{2}\right.
\end{array}
$$

$$
2 \text { mol } \mathrm{HCl}=\operatorname{mol} \mathrm{CO}_{2}
$$

(2) $0,0049866019 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{mol} \mathrm{CO}}=0,0099732038 \mathrm{~mol} \mathrm{HCl}$
(3) $\mathrm{M}_{\mathrm{HCl}}=\frac{0,0099732038 \mathrm{~mol} \mathrm{HCl}}{0.04890 \mathrm{~L}}=0.204 \mathrm{M} \mathrm{HCl}$

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} m V^{2}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
- Energy can be stored in chemicals ... molecules and atoms. INTERNAL ENERGY: "U"
 related to the kinetic and potential energy of atoms, molecules, and their component parts.
- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)
$Q: h e a t$
SYSTEM: the object or material under study
SURROUNDINGS: everything else

Type of process	Energy is ...	Sign of Q	Temp of SURROUNDINGS ...
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SUROUNDINGS	-	increases

Reaction demonstration:
$\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow 1 \mathrm{OH}_{2} \mathrm{O}(\mathrm{Q})+2 \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{Ba}_{\mathrm{a}}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$

Observations:

* Reaction vessel is quite COLD
* Formation of liquid (water?)
* Distinct odor (ammonia?)

