
¹² few more exchange examples: *
Ca(l₂(i_q) + 2 K_g NO₃(a_q)
$$\rightarrow$$
 Ca(M₃)₂(a_t)+2 A_g(l(s)
Ca²⁺ cl⁻ A_g⁺ NO₃
(A₃ PO₄ (a_q) + 3 N_aOH(a_q) \rightarrow 3 H₂O(l) + Na₃ PO₄ (a_g)
H⁴ PO₄³⁻ Na⁺ OH
Core. Detect this reaction by
looking for HEAT RELEASE
K(l (a_x) + NaNO₃ (a_q) \rightarrow KN₃ Co₄ (a_g) NO REACTION
K⁺ cl⁻ Ma⁺ NO₃
Both "products" are water-soluble ionic compounds; present
in water as FREE ions (same as they were before being
mixed). There's no DRIVING FORCE for a reaction here.
H₂ So₄ (a_q) + Na₂ (O₃ (a_q) \rightarrow H₂ (O₃ (a_g) + Na₂ So₄ (a_g)
H⁺ So₄^{L-} Na⁺ Co₃⁻ H₂ (O₃ (a_q) \rightarrow H₂ (O₁ (b₁ + Co₂(b₁) + Na₂ So₄ (a_g))
Driving force is the formation of CARBONIC ACID and its decomposition into WATER
MOLECULES and CARBON DIOXIDE GAS (which escapes as bubbles)

¹²³ OXIDATION / REDUCTION CHEMISTRY

- Exchange reactions involve ions pairing up, but the ions themseves are not formed in exchange reactions. Exchanges start with pre-existing ions.

... but the ions have to be produced somehow - through a chemistry that involves the transfer of electrons.

- oxidation / reduction chemistry ("redox" chemistry) involves transfer of electrons and can make ions.

- oxidation and reduction always occur together. In other words, we can't just make free electrons using oxidation without giving them somewhere to go.

- Many of the types of reactions that we learned about in previous courses are redox reactions!

- DECOMPOSITIONS (often redox)
- SINGLE REPLACEMENT (always redox)

 $(uls) + 2 \operatorname{Ag} \operatorname{NO}_{2}(aq) \rightarrow (ulwo_{3})_{2}(aq) + 2 \operatorname{Ag}(s)$ $(u \rightarrow (u^{2} + 2e^{-}) \operatorname{oxidation}$ $2 \operatorname{Ag}^{+}_{3} + 2e^{-}_{3} \rightarrow 2 \operatorname{Ag}(s) \text{ reduction}$

net unic \rightarrow $Cu(s) + 2Ag^{\dagger}(uq) \rightarrow (u^{2+}(uq) + 2Ag(l))$ - COMBUSTION

$$2 \operatorname{Mg}(s) + O_2(g) \longrightarrow 2 \operatorname{Mg}O(s)$$

$$2 \operatorname{Mg}(s) \longrightarrow 2 \operatorname{Mg}^{2+} + 4e^{-} \text{ oxidation}$$

$$O_2(g) + 4e^{-} \longrightarrow 2 O^{2-} \text{ reduction}$$

) <u>COMBINATION REACTIONS</u>

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product

- Often involve large energy changes. Sometimes violent!

Example:

 $2 \text{A} | (s) + 3 \text{Br}_2(l) \longrightarrow 2 \text{A} | \text{Br}_3(s)$

- Reactions where a SINGLE REACTANT breaks apart into several products

- Form:
$$A \longrightarrow B + C + ...$$

Example:

 $2H_1O_1(\ell) \longrightarrow 2H_2O(\ell) + O_2(g)$

* This reaction is NOT a combustion reaction, even though O_2 is involved!

* Combustion reactions CONSUME O_2 , while this reaction PRODUCES O_2

OMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (${\rm O_2}$) to form OXIDES.

hydrocarbons makes carbon dioxide and

environments, carbon

monoxide is made

water, if enough oxygen is present.

In low-oxygen

instead!

Dxides!

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:
$$AB + O_{2} \rightarrow AO + BO$$

Oxide: a compound containing OXYGEN and one other element!

Examples:

$$\begin{array}{c} \star \\ C_{3}H_{8}(g) + 5O_{2}(g) \longrightarrow 4H_{2}U(g) + 3CO_{2}(g) \end{array}$$

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (p151, 9th edition)

- Form:
$$A + BC \longrightarrow AC + B$$

"A" and "B" are elements., often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.

Examples:

$$(u(s) + 2A_g ND_3(aq)) \rightarrow (u(ND_3)_2(aq) + 2A_g(s))$$

 $(u(s) + 4A_g ND_3(aq)) \rightarrow (u(ND_3)_2(aq) + 2A_g(s))$
 $(u(s) + 4A_g ND_3(aq)) \rightarrow (u(ND_3)_2(aq) + 4A_g(s))$
 $(u(s) + 4A_g ND_3(aq)) \rightarrow (u(ND_3)_2(aq) + 4A_g(s))$

REDOX LANGUAGE

"oxidizer"

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.

- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.

$$\begin{array}{c} +3 & -1 \\ 2 & A \\ (s) + 3 & B \\ c_{2} (l) \rightarrow 2 & A \\ B \\ c_{3} (s) \end{array}$$

* Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).

* Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS END OF CHAPTER 4 MATERIAL