CLASSIFYING REACTIONS

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN ($\hat{\textit{0}}_2$) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:
$$AB + Q_{2} \rightarrow AO + BO$$

Oxide: a compound containing OXYGEN and
one other element!
Examples:
 $(C_{3}H_{g}(q) + 5O_{2}(q) \rightarrow 4H_{2}U(q) + 3CO_{2}(q)$
 $2M_{g}(s) + O_{2}(q) \rightarrow 2M_{g}O(s)$
* Combustion of
hydrocarbons makes
carbon dioxide and
water, if enough
oxygen is present.
In low-oxygen
environments, carbon
monoxide is made
instead!
 $2M_{g}(s) + O_{2}(q) \rightarrow 2M_{g}O(s)$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (more on that later!)

- Form:
$$A + BC \longrightarrow AC + B$$

"A" and "B" are elements., often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.

Single replacement reactions are all examples of ELECTRON TRANSFER or OXIDATION-REDUCTION chemistry!

OUBLE REPLACEMENT REACTIONS

- Also called "exchange" reactions

- The ions in two ionic compounds (one compound may also be an acid) EXCHANGE PARTNERS, forming two new compounds.

Form:
$$AB + CD \longrightarrow AD + CB$$

"A" and "C" are CATIONS "B" and "D" are ANIONS

- Can be predicted based on the characteristics of the potential products (More on that later!)

- Occur in AQUEOUS SOLUTION

- Do not involve electron transfer.

Examples:

Precipitation!

DOUBLE REPLACEMENT (EXCHANGE) REACTIONS

... but HOW do they switch partners?

Exchange reactions almost always take place in AQUEOUS SOLUTION

In aqueous solution, IONIC THEORY applies!

- Briefly, ionic theory states that certain substances (like soluble ionic componds) break apart into their component ions when dissolved in water!

$$Na((aq) + AgNO_2(aq)) \rightarrow Ag((ls) + NaNO_2(aq))$$

 1
Formation of AgCI drives this reaction!

114

For an exchange reaction to proceed, there must be something (a new product) DRIVING the reaction.

3 kinds of exchange chemistry:

 \overrightarrow{D} Reactions that form PRECIPITATES (insoluble ionic compounds)

) Reaction that form STABLE MOLECULES like water

- if water forms, reaction is called "neutralization"

Reactions that form UNSTABLE MOLECULES that break down into other small molecules, often gases.

L If any of these three possibilities form from the "ion soup", a reaction will occur.

If not, NO reaction occurs.

including their charges, and pair them up. The formulas of the products are controlled by the CHARGES of the IONS in the new compounds!

$$3M_{g}(l_{2}(u_{g})+2N_{a_{3}}P_{0}(u_{g})) \rightarrow M_{g_{3}}(v_{g}) = 6N_{a_{3}}(u_{g}) - (\tau_{uble 7.1})$$

- Does a solid (insoluble) ionic compound form? Check DATA (p 172 in book)

* When writing exchange reactions, figure out the formulas of the products FIRST, and THEN balance the equation.