LIMITING REACTANT CALCULATIONS

- To find the limiting reactant, calculate how much product would be produced from ALL given reactants. Whichever produces the SMALLEST amount of product is the limiting reactant, and the smallest anount of product is the actual amount of product produced.

$$
\begin{aligned}
& \text { Example: } 56.08 \\
& \quad\left(\mathrm{COO}(s)+3^{12.01} \mathrm{C}(s) \xrightarrow{\Delta} C_{a}^{64.10 \text { - Formula weights }} \text { (s) }+\mathrm{CO}_{2}(g)\right.
\end{aligned}
$$

If you start with 100 . g of each reactant, how much calcium carbide would be produced?

$$
\begin{aligned}
& \mathrm{C}: 12.01 \mathrm{~g} C=\operatorname{mol} C\left|3 \mathrm{~mol} C=\operatorname{mol} \mathrm{Cal}_{2}\right| 64.10 \mathrm{~g} \mathrm{CaC}_{2}=\mathrm{mol} \mathrm{CanC}_{2} \\
& 100 \mathrm{gg} C \times \frac{\mathrm{molC}}{12.01 \mathrm{gC}} \times \frac{\mathrm{mol} \mathrm{Cal} \mathrm{C}_{2}}{3 \mathrm{molC}} \times \frac{64.10 \mathrm{~g} \mathrm{CaC}}{\mathrm{~mol} \mathrm{Can}_{2}}=178 \mathrm{~g} \mathrm{CaC}
\end{aligned}
$$

114 g of calcium carbide should be produced. Calcium oxide runs out when 114 g of calcium carbide is made, so no further product can be produced after that point.

We say that calcium oxide is "limiting", and carbon is present "in excess".

- Chemical reactions do not always go to completion! Things may happen that prevent the conversion of reactants to the desired/expected product!
(1) SIDE REACTIONS:

$$
\begin{aligned}
& \mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \left\lvert\, \begin{array}{l}
\text { This reaction occurs when there is a large amount } \\
\text { of oxygen available }
\end{array}\right. \\
& 2 \mathrm{C}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO} \begin{array}{l}
\ldots \text { while this reaction is more favorable in low-oxygen } \\
\text { environments! }
\end{array}
\end{aligned}
$$

... so in a low-oxygen environment, you may produce less carbon dioxide than expected!
(2) TRANSFER AND OTHER LOSSES

- When isolating a product, losses may occur in the process. Example: filtering

- Reactions may reach an equillbrium between prodcuts and reactants. We'll talk more about this in CHM 111. The net results is that the reaction will appear to stop before all reactants have been consumed!
- All of these factors cause a chemical reaction to produce LESS product than calculated. For many reactions, this difference isn't significant. But for others, we need to report the PERCENT YIELD.

$$
\begin{gathered}
\text { PERCENT } \\
\text { YIELD }
\end{gathered}=\frac{\text { ACTUAL YIELD }}{\text { THEORETICAL YIELD }} \times 100 \%
$$

[^0]104

$$
\underset{\substack{78.114 \\ \text { benzene }}}{\mathrm{C}_{6} \mathrm{H}_{6}}+\underset{\text { nitric acid }}{\mathrm{HNO}_{3}} \longrightarrow \underset{\text { nitrobenzene }}{123,111 \mathrm{~g} \mid \mathrm{mul} \text { <- Form }}
$$

123 . $111 \mathrm{~g} \mid \mathrm{mul}<$ - Formula weights
22.4 grams of benzene are reacted with excess nitric acid. If 31.6 grams of nitrobenzene are collected from the reaction, what is the percent yield?

To find the percent yield, we need to know both the ACTUAL YIELD (31.6 g of nitrobenzene) and the THEORETICAL YIELD (which we don't yet know). The theorietical yield is the amount of nitrobenzene that we'd produce if all 22.4 g of benzene are converted to product.

$$
\begin{aligned}
& 78.114 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{mol}_{6} \mathrm{C}_{6}\left|\operatorname{mol} \mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{mol}_{6} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\right| 123.11 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}=\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \\
& 22.4 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{6} \mathrm{H}_{6}}{78.114 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{\mathrm{mol}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{123.11 \mathrm{~g} \mathrm{C}_{6} \mathrm{HgNO}_{2}}{\mathrm{~mol}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}=35.3 \mathrm{~g} \\
& \% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \% \\
& \frac{\mathrm{C}_{6} \mathrm{Hg}_{\mathrm{g}} \mathrm{NO}_{2}}{\substack{\text { THEORETICAL } \\
\text { YIELD }}} \\
& \% \text { yield }=\frac{31.6 \mathrm{~g}}{35.3 \mathrm{~g}} \times 100 \%=89.5 \%
\end{aligned}
$$

105
25.0 mL of acetic acid solution requires 37.3 mL of 0.150 M sodium hydroxide for complete reaction. The equation for this reaction is:

$$
\mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC} 2 \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What is the molar concentration of the acetic acid?

$$
\frac{\text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\text { Locution }}
$$

Since we already know the volume of acetic acid, what we really need to find our is the NUMBER OF MOLES of acetic acid that are in the solution!

$$
0.150 \mathrm{~mol} \mathrm{NaOH}=\mathrm{L} \quad \text { mol } \mathrm{NaOH}=\operatorname{mol~H} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{~mL}=10^{-3} \mathrm{~L}
$$

First, calculate moles of acetic acid from, volume sodium hydroxide:

$$
37.3 \mathrm{~mL} \mathrm{NaOH} \times \frac{10^{-3} \mathrm{~L}}{m L} \times \frac{0.150 \mathrm{mal} \mathrm{NaOH}}{L} \times \frac{m a l \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{m o l \mathrm{NaOH}}=\begin{aligned}
& 0.005595 \mathrm{mul} \\
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

Now, find concentration:

$$
M=\frac{\text { mol } \mathrm{HC} \mathrm{C}_{3} \mathrm{U}_{2}}{\mathrm{~L}}\left|25.0 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{\mathrm{~mL}}=0.0280 \mathrm{~L}\right| M=\frac{0.005595 \mathrm{mul}}{0.0250 \mathrm{~L}}=\begin{aligned}
& 0.224 \mathrm{M} \\
& H C_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

Shortcut: Use MILLIMOLES

$$
\begin{aligned}
& 37.3 \mathrm{~mL} \times \frac{0.150 \mathrm{~mol} \mathrm{NaOH}}{L} \times \frac{\text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\text { mol } \mathrm{NaOH}_{a}}=5.895 \mathrm{mmal} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \mathrm{M}_{2}=\frac{\mathrm{mol}}{L}=\frac{m \mathrm{~mol}^{3}}{m L}=\frac{5.895 \mathrm{mmol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{25.0 \mathrm{~mL}}=0.224 \mathrm{MHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

$$
4 \underset{\substack{\text { propylene }}}{42.081 \mathrm{~g} \mid \mathrm{mol}} \underset{3}{\mathrm{H}_{6}}+6 \mathrm{NO} \longrightarrow \underset{\substack{\text { acrylonitrile }}}{\mathrm{S}_{3}^{3,064} \mathrm{H}_{3} \mathrm{~N}^{\mathrm{mdl}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present.
1 - Convert mass of propylene to moles. Use formula weight.
2 - Convert moles propylene to moles acrylonitrile. Use chemical equation.
3 - Convert moles acrylonitrile to mass. Use formula weight.

$$
\begin{gathered}
42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}\left|4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right| 53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \\
651000 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}= \\
(2)
\end{gathered}
$$

[^0]: ... the percent yield of a reaction can never be greater than 100% due to conservation of mass! If you determine that a percent yield is greater than 100%, then you've made a mistake somewhere - either in a calculation or in the experiment itself!

