- You need to be able to tell, by looking at a name OR a formula, what kind of compound you are working with!

DON'T GET THE NAMING SYSTEMS MIXED UP! EACH KIND OF COMPOUND IS NAMED WITH ITS OWN SYSTEM!

FROM A CHEMICAL NAME

- If the name has a Roman numeral, the name of a metal, or "ammonium", the compound is likely IONIC
- If the name has a Greek prefix AND the prefix is NOT in front of the word "hydrate", the compound is BINARY MOLECULAR
- If the name contains the word "acid":
 - ... and starts with "hydro-", then the compound is a BINARY ACID
 - ... and does not start with "hydro-", the compound is an OXYACID

- If the formula starts with H and is not either water or hydrogen peroxide, the compound is likely an ACID. Which kind?
 - BINARY ACIDS contain only two elements
 - OXYACIDS contains oxygen
- If the formula contains only nonmetals (and is not an ammonium compound or an acid), the compound is likely MOLECULAR

Examples:

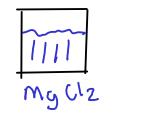
 $P \; \text{Cl}_{3} \; \text{$:$} \; \overset{\text{BINARY MOLECULAR}}{\text{Name: phosphorus trichloride}} \; \; \text{NH}_{4} \; \text{Cl} \; \; \overset{\text{IONIC (ammonium ion)}}{\text{Name: ammonium chloride}}$

17 3 POn: OXYACID (hydrogen, phosphate) Name: phosphoric acid

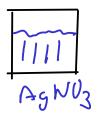
END OF NOTES FOR TEST #!

- are the "recipes" in chemistry
- show the substances going into a reaction, substances coming out of the reaction, and give other information about the process

$$\text{MgCl}_{2}(aq) + 2 \text{AgNO}_{3}(aq) \xrightarrow{\text{"yields"}} 2 \text{Ag}(|_{(s)} + \text{Mg}(NO_{3})_{2}(aq)$$


REACTANTS - materials that are needed fot a reaction

PRODUCTS - materials that are formed in a reaction

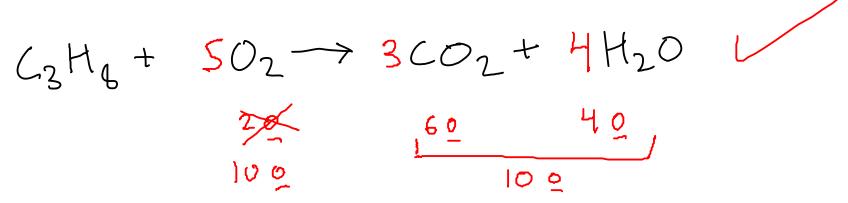

COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others

PHASE LABELS - give the physical state of a substance:


- (s) -solid
- (I) liquid
- (g) gas
- (aq) aqueous. In other words, dissolved in water

CHEMICAL EQUATIONS

$$2 \text{ Mg(s)} + O_2(g) \xrightarrow{\Delta} 2 \text{ MgO(s)}$$


REACTION CONDITIONS - give conditions necessary for chemical reaction to occur. May be:

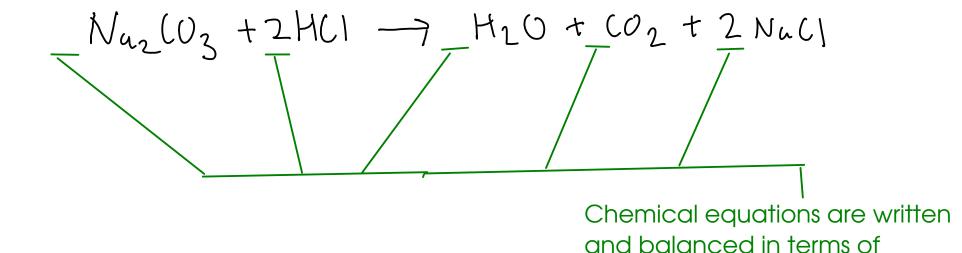
- \triangle apply heat
- catalysts substances that will help reaction proceed faster
- other conditions, such as required temperatures
- Reaction conditions are usually written above the arrow, but may also be written below if the reaction requires several steps or several different conditions

COEFFICIENTS

- Experimentally, we can usually determine the reactants and products of a reaction
- We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process called BALANCING
- BALANCING a chemical equation is making sure the same number of atoms of each element go into a reaction as come out of it.
- A properly balanced chemical equation has the smallest whole number ratio of reactants and products.
- There are several ways to do this, but we will use a modified trial-and-error procedure.

BALANCING

- \bigcirc Pick an element. Avoid (if possible) elements that appear in more than one substance on each side of the equation.
- Change the coefficients on substances containing this element so that the same number of atoms of the element are present on each side. CHANGE AS LITTLE AS POSSIBLE!
- (3) Repeat 1-2 until all elements are done.
- Go back and quickly <u>VERIFY</u> that you have the same number of atoms of each element on each side, If you used any fractional coefficients, multiply each coefficient by the DENOMIMATOR of your fraction.


Use SMALLEST WHOLE NUMBER RATIOS!

$$3M_9Cl_2+2N_{a_3}PO_4 \longrightarrow M_{g_3}(PO_4)_2+6N_aCl_V$$

To get rid of the fraction (5/2), we will multiply each of the coefficients by the denominator of the fraction (2):

- * Start with 'S;, since 'H' and 'O' appear in multiple compounds on each side.
- * Then, balance 'Na"
- * Next, balance 'H' (easier than 'O')
- * Finally, balance 'O' (and it's already done!)

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!

ATOMS and MOLECULES

- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!