156 POLYPROTIC ACIDS
Find pH of $\mathrm{O}_{1} 1 \mathrm{OM} \mathrm{H} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$ acidic protons!

(2)
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\begin{aligned}
& K_{a_{1}}=6.9 \times 10^{-3} \\
& K_{a_{2}}=6.2 \times 10^{-8} \\
& K_{a_{3}}=4.8 \times 10^{-13}
\end{aligned}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solving the equilibrium of phosphoric acid's first proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{K}_{\mathrm{a}}=6,9 \times 10^{-3}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}
\end{aligned}
$$

SPECIES	INITIAL CONC	CHANGE	EQUILIBRIUM CONC
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	x
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-X$	$0.10-x$

$$
\begin{aligned}
& \frac{x^{2}}{0.10-x}=6.9 \times 10^{-3} \quad \begin{array}{l}
\text { This time, let's solve the quadratic } \\
\text { 'x'<<0.10 might not be valid here }
\end{array} \\
& x^{2}=\left(6.4 \times 10^{-3}\right)(0.10)-\left(6.4 \times 10^{-3}\right) x \\
& x^{2}+\left(6.9 \times 10^{-3}\right) x-\left(6.9 \times 10^{-4}\right)=0 \\
& a=1, b=6.4 \times 10^{-3}, 6=-6.9 \times 10^{-4} \\
& x=2.30 .43 \times 10^{-2} 0 R-2.943 \times 10^{-2} \\
& x=2.3043 \times 10^{-2}=\left[130^{+}\right], \text {so } P H=1.64
\end{aligned}
$$

${ }^{158}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250. mL of solution.

Find out what kind of salt we have - acidic, basic, neutral:

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-} \\
& \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \text {Nitric acid is a STRONG ACID, so nitrate } \\
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \begin{array}{l}
\text { Ammonia is a WEAK I BASE, so ammonium ion } \\
\text { should be ACIDIC }
\end{array}
\end{aligned}
$$

So, we solve the equilibrium between ammonium ion and water:

159

$$
K_{a, \mathrm{NH}_{4}+}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.56 \times 10^{-10}
$$

SPECIES	INITIAL CONC	CHANGE	EQUILIBRIUM CONC
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
NH_{3}	0	$+X$	X
NH_{4}^{+}	0.1499	$-X$	$0.1499-x$

Figure out the initial ammonium ion concentration (same as the nominal ammonium nitrate concentration)

$$
\begin{aligned}
& 3.00 \mathrm{NHMgNO}_{3} \times \frac{\mathrm{mol}}{80.052 \mathrm{~g}}=0.0325 \mathrm{~mol} \\
& \frac{0.0375 \mathrm{~mol}}{0.250 \mathrm{~L}}=0.1449025633 \mathrm{~m}
\end{aligned}
$$

Solve ...

$$
\begin{aligned}
& \frac{x^{2}}{0.1499-x}=5.56 \times 10^{-10} \\
& x x<60.4499 \\
& \frac{x^{2}}{0.1499}=5.56 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& x=9.13 \times 10^{-6}=\left[4_{3} 0^{+}\right] \\
& p H=5.04
\end{aligned}
$$

(This pH seems reasonable for a salt we expect to be acidic!)

THE COMMON-ION EFFECT

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$

From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?

$$
\mathrm{NH}_{y} \mathrm{Cl}\left(\mathrm{ss} \rightarrow \mathrm{NH}_{q}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\right.
$$

The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH ? Let's find out!

Calculate the pH of a solution which contans 0.10 M ammonia AND 0.10 M ammonium chloride.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}
$$

SPECIES	INITIAL	CHANGE	EQUILIBRIUM CONC
OH^{-}	O	$+X$	X
NH_{4}^{+}	0.10	$+X$	$0.10+X$
NH_{3}	0.10	$-X$	$0.10 \sim X$

$$
K b=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

$$
\begin{gathered}
\frac{(0.10+x)(x)}{(0.10-x)} \approx 1.8 \times 10 \\
1 \text { if we assume } x \ll 0.10, \text { then: } \\
0.10-x \approx 0.10 \\
0.10+x \approx 0.10 \\
\frac{(0.10) x}{(0.10)}=1.8 \times 10^{-5}
\end{gathered}
$$

$$
\begin{aligned}
& x=1.8 \times 10^{-5}=[04-] \\
& p O H=4.74 \\
& p H=14.00-4.74 \\
& p H=9.26
\end{aligned}
$$

The common ion effect suppresses the ionization of ammnoia, LOWERING the pH relative to the original ammonia solution!

- resist pH change caused by either the addition of strong acid/base OR by dilution

Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

(1)Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak NH_{3} ase and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text {) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

161

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& k_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

(1) Take log of both sides
(2) Multiply by -1
(3) Rearrange, solving for pH

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[M A]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

$[\mathrm{A}-] \ldots$ from the salt
$[H A] \ldots$ from the weak acid

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

162

$$
\begin{aligned}
& p H=p K_{a_{1} \text { acidic }}+\log \left(\frac{\text { [basic species }]}{[\text { acidic species] }}\right) \left\lvert\, \begin{array}{l}
\text { Henderson- } \\
\begin{array}{c}
\text { Hasselbalch } \\
\text { Equation }
\end{array} \\
\frac{\text { ex: acidic buffer }}{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}} \\
\mathrm{pH}=\mathrm{ph}_{4} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{array}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)\right.
\end{aligned}
$$

ex: basic buffer

$$
\begin{aligned}
& \mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \mathrm{PH}=\mathrm{pKa}_{\mathrm{NH}_{4}+}+\log \left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}+\right]}\right) \\
& \quad \mathrm{pHa}+\mathrm{NK}_{b}=14,00 \ldots \text { is the -log of } K_{a} \times K_{b}=K_{w}
\end{aligned}
$$

${ }^{163}$ Calculate the pH of a buffer made from 30.2 grams of ammonium chloride and 29 mL of 18.1 M ammonia diluted to 150 mL with water.

$$
p H=p K_{a_{1 \text { acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{c}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

Acid: $\mathrm{NH}_{4}{ }^{+}$Base: $\mathrm{NH}_{3} \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
We need to find the concentrations of both ammonia (base) and ammonia, m ion (acid)

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]: \quad M_{1} V_{1}=M_{2} V_{2}} \\
& (18.1 \mathrm{~m})(29 \mathrm{~mL})=m_{2}(150 . \mathrm{mL}) \\
& \mathrm{M}_{2}=3.449 \mathrm{M} \mathrm{NH} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& 30.2 \mathrm{~g} \mathrm{NHyCl}_{4} \times \frac{\mathrm{mol}}{53.492 \mathrm{~g}} \times \frac{}{0.150 \mathrm{~L}}=3.764 \mathrm{M} \mathrm{NH}^{+} \\
& K_{b, N H_{3}}=1.8 \times 10^{-5} ; \rho K_{b}=4.74 ; \rho K_{a}=14.00-4.74=9.26 \\
& p H=9.26+\log \left(\frac{3.499}{3.764}\right)=9.23
\end{aligned}
$$

