SALTS

- Compounds that result from the reaction of an acid and a base.
- Salts are strong electrolytes (completely dissociate in water) IF SOLUBLE (not all salts dissolve appreciably).
- Most ionic compounds are considered salts (they can be made by some reaction between the appropriate acid and base)
- Salts have acidic and basic properties! The ions that form when salts are dissolved can be acidic, basic, or neutral.
- Salts made from WEAK ACIDS tend to form BASIC solutions
- Salts made from WEAK BASES tend to form ACIDIC solutions

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}: \quad \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-}
$$

Do any of these ions have acidic or basic properties?
Na^{+}: neutral. Not a proton donor or a proton acceptor
$\mathrm{CO}_{3}{ }^{2-}$: in solution. it can accept protons to form the weak acid CARBONIC ACID - in solution.

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{CO}_{3}^{-2}
$$

ex: $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

$$
\mathrm{NaA} \xrightarrow{\longrightarrow} \mathrm{Na}^{+}+\mathrm{A}^{-} \text {The salt dissolves completely! }
$$

For this reaction to occur, HA MUST be

stable in water. In other words, a weak acid.

$$
\frac{A^{-}}{L^{-}}
$$

The anion is a BASE. It can accept a proton from water to form the weak (therefore stable as a molecule!) acid HA

$$
\left.K_{b}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[A^{-}\right]} \right\rvert\, \text {This is the base ionization constant for } A^{-}
$$

Since \bar{A} and HA are a conjugate pair, the ionization constants are related! You will generally not find both

$$
\begin{aligned}
& K_{w}=\left(K_{a, H A}\right)\left(K_{b, A^{-}}\right) \\
& 1.0 \times 10^{-14} \\
& \quad L_{1}=p K_{n}+p K_{b}
\end{aligned}
$$ the Ka AND Kb for a conjugate pair in the literature, since one can be easily converted to the other!

SALT OF A WEAK BASE

ex: $\mathrm{NH}_{4} \mathrm{Cl}$

$$
\begin{aligned}
& B H C l \longrightarrow \mathrm{BH}^{+}+\mathrm{Cl}^{-} \mid \text {The salt dissociates completely! } \\
& \mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~B}^{2}+\mathrm{H}_{3} \mathrm{O}^{+} \left\lvert\, \begin{array}{l}
\ldots \text { but this ionization is an } \\
\text { EQUILIBRIUM process! }
\end{array}\right. \\
& \left.K_{a}=\frac{[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{BH}^{+}\right]} \right\rvert\, \text {Acid ionization constant for } \mathrm{BH}^{+} \\
& K_{w}=\left(K_{a, B H^{+}}\right)\left(K_{b, B}\right)
\end{aligned}
$$

Find the pH for salt solutions just like you would find pH for any other weak acid or weak base solutions. Only trick is to find out whether the salt is actually acidic or basic!
$0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$... Find the pH of the solution

$$
\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

Acidic, basic, or neutral salt?
This is the WEAK BASE ammonia. Stable \measuredangle in water.

$$
\begin{array}{ll}
\mathrm{NH}_{4}{ }^{+}: \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{Cl}^{-}: \quad \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \overline{\mathrm{HCl}}+\mathrm{OH}^{-} X
\end{array}
$$

This is a STRONG ACID, which does not exist as a stable molecule in water.
The conjugate of a strong acid or base is NEUTRAL - does not affect pH!
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \begin{aligned} & \text { This equilibrium affects the } \mathrm{pH} \text {, so it is the } \\ & \text { equilibrium we'll need to solve to find } \mathrm{pH} \text { ! }\end{aligned}$

151

$$
\begin{aligned}
\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{Ka,NH}_{4}^{+} & =\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{aligned}
$$

We can get Ka for the acid from Kb for the base!

$$
\begin{aligned}
& K_{0, N H_{g}}=1.8 \times 10^{-5} \\
& K_{a} \times h_{b}=1.0 \times 10^{-14} \\
& \text { So, } h_{a}=5.56 \times 10^{-10} \quad\left(\text { forNHy }{ }^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
{\left[\mathrm{H}_{2} \mathrm{O}^{+}\right] } & =7.45 \times 10^{-6} \\
\mathrm{PH} & =\log _{10}\left(7.45 \times 10^{-6}\right)=5.13
\end{aligned}
$$

Compare:
$\mathrm{pH}=1.00$ for 0.100 M strong acid $\mathrm{pH}=2.16$ for 0.100 M nitrous acid $\mathrm{pH}=7.00$ for distilled water
$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find PH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Check the ions formed to see if they are acidic, basic, or neutral!
Na^{+}: Cannot be a B-L acid (no H), also not likely to be B-L base, since it's positively charged.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$: Has protons, but also has a negative charge - so it may be more likely

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underbrace{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}+\mathrm{OH}^{-}
$$

Acetic acid is a WEAK ACID and stable in water, so the acetate ion CAN function as a BASE!

$$
\left.\begin{array}{l}
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{b}_{1} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right][\mathrm{OH}]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]} \begin{array}{l}
\text { Kb for acetate ion inst in the chart } \\
\text { in the appendix, but the Ka for }
\end{array} \\
\text { acetic acid (the conjugate acid } \\
\text { of acetate ion) is available! }
\end{array}\right\}
$$

153

$$
\begin{aligned}
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{-}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& \mathrm{K}_{1} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=
\end{aligned}
$$

SPECIES	INITIAL CONC	CHANGE	EQUILIBRIUM CONC
$O \mathrm{H}^{-}$	O	$+x$	x
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	0	$+X$	x
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	0.100	$-X$	$0,100-x$

$$
\frac{x^{2}}{0.100-x}=5.88 \times 10^{-10}
$$

$$
x=7,67 \times 10^{-6}=\left[0 \mathrm{H}^{-}\right]
$$

154

$$
\begin{aligned}
& 7,67 \times 10^{-6}=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{POH}=-\log _{10}\left(7.67 \times 10^{-6}\right)=5.12
\end{aligned}
$$

Calculate poH , then convert to pH using ' $\mathrm{pH}+\mathrm{pOH}=14$ '

$$
p H=14.00-5.12
$$

$$
p H=8.88
$$

Compare:
$\mathrm{pH}=7.00$ for pure distilled water $\mathrm{pH}=13.00$ for 0.100 M strong base $\mathrm{pH}=11.13$ for 0.100 M ammonia
0.100 M NaCl, Find pH

$$
\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

Check these ions to see if they're acid, basic, or neutral:
Na^{+}: Cannot be a B-L acid (no H), also not likely to be B-L base, since it's positively charged.
C^{-}- Cannot be a B-L acid (no H), but can it act as a base?

$$
\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \frac{\mathrm{HCl}_{\mathrm{HCl}}}{\text { n. }}+\mathrm{OH}^{-}
$$

So, chloride ion is ALSO a neutral ion!

Since neither sodium ion nor chloride ion affect the water equilibrium, the pH of this solution will be the same as the pH of pure water: 7.00

