Compare:

139

- Weak acid  $HNO_2$ : pH of 0.10 M solution = 2.15

$$H_{NO_{3}} + H_{20} \longrightarrow H_{30}^{+} + NO_{3}^{-}$$
  

$$0.10 M H_{NO_{3}}, [H_{30}^{+}] = 0.10 M$$
  

$$pH = -\log_{10}(0.10) = 1.00$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion

<sup>140</sup> Consider an 0.100 M solution of the weak base ammonia:

What is the pH?

$$VH_3 + H_2 O \rightleftharpoons NH_4^+ + OH^-$$

$$K_6 = \frac{1.8 \times 10^{-5}}{5} = \frac{1.44}{5} \frac{1.0}{5} = \frac{1.8 \times 10^{-5}}{5} = \frac{1.$$

We beed to solve this, but which term are we most interested in?

We want to solve for the hydroxide concentration, because it can be converted to hydronium concentration (and pH)!

| SPECIES | INITIAL<br>CONC | CHANGE  | EQUILIBRIUM<br>CONC |
|---------|-----------------|---------|---------------------|
| NH4+    | 0               | $+\chi$ | ×                   |
| Orl-    | 0               | + X     | ×                   |
| NH3     | 0,100           | - X     | 0.100-X             |

Plug in to the equilibrium expression:

$$1.8 \times 10^{-5} = \frac{(x)(x)}{(0.100 - x)} = \frac{\chi^2}{0.100 - x}$$

with the quadratic formula, OR we can notice that that the value of Wahaviel This is a QUADRATIC EQUATION. We can solve it 1.8×10-5- X that the value of 'x' should be much smaller than 0.100!Assume X<< 0,100, 50 0.100-X = 0,100 1.8×10  $\chi = 0.00134|6408 = [04-]$  This is HYDROXIDE ion concentration, \*NOT\* hydronium!  $pOH = -log_{10}(0.0013416408) = 2.87$ pH=14,00-2.87 If you had solved this problem with the quardatic pH=11.13 equation, you would have obtained a pH of 11.13 - no difference at all to two significant figures!

Compare pH to the pH of an 0.100 M solution of the strong base NaOH:  $PM_{INH_3} = 11.13$   $N_{\alpha}OH \longrightarrow N_{\alpha}^{+} \pm 0H^{-}$  $O.100 M N_{\alpha}OH ; COH^{-}] = 0.100$ 

$$pOH = -log_{0}(0.00) = 1.00$$
  
 $pH = 14.00 - 1.00 = 13.00 = pH$ 

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration
- the lower the HYDRONIUM concentration

<sup>13</sup>Find the pH and the degree of ionization for an 0.10 M solution of formic acid:  $HCHO_2$ 

$$H(HO_2 + H_2) \rightleftharpoons H_3O^+ + CHO_2$$

$$K_{\alpha} = \frac{[H_{3}0^{+}][(H_{0}2]]}{[H(H_{0}2]]} = 1.7 \times 10^{-4}$$

Constant's value at 25C obtained from the chart on p A-13, Ebbing 9th ed

| SPECIES | INITIAL<br>CONC | CHANGE | EQUILIBRIUM<br>CONC |
|---------|-----------------|--------|---------------------|
| H30+    | 0               | + X    | X                   |
| CH02    | Ο               | + ×    | X                   |
| HCHO2   | 0.10            | - X    | 0.10 - X            |

$$1.7 \times 10^{-4} = \frac{(x)(x)}{0.10 - x}$$

$$7 \times 10^{-4} = \frac{1}{0.10 - \chi}$$



Degree of ionization? DEGREE OF IONIZATION is the fraction of a weak electrolyte (acid or base) that ionizes in water.

$$\frac{[CHO_2]}{[H(HO_2]_{orig}]} = \frac{[H_3O^+]}{[H(HO_2]_{orig}]} = \frac{0.004|23|056}{0.10} = 0.04| = 0.0.1.$$

Sometimes, we express degerr of ionization as a percent and call it PERCENT IONIZATION:

Check this in lab - expt 16A: A more dilute acid solution should have a HIGHER degree of ionozationthanks to Le Chateleir's Principle - even if the dilution causes the pH of the acid solution to decrease overall! An aqueous solution of 0.25 M trimethylamine has a pH of 11.63. What's the experimental value of Kb?  $((H_3)_3 N)$ 

| SPECIES   | INITIAL<br>CONC | CHANGE | EQUILIBRIUM<br>CONC |
|-----------|-----------------|--------|---------------------|
| CC43)3N4+ | δ               | + X    | X                   |
| 04-       | 0               | + X    | X                   |
| (CHJ)3 N  | 0.25            | - X    | 0.25-X              |

$$k_{b} = \frac{(x)(x)}{(0.2s - x)}$$
  
 $k_{b} = \frac{x^{2}}{0.2s - x}$ 

If we want to find the value of Kb, then we need to come up with some other way (than solving the quadratic equation) of finding 'x'.

$$k_b = \frac{\chi^2}{0.25 - \chi}$$

We know from our setup that 'x' equals the hydroxide ion concentration. Since concentration of hydroxide is reated to pH, we can find 'x' through the pH

$$x = Courl
pH + pOH = 14.00
11.63 + pOH = 14.00
pOH = 2.37
-2.37
x = 10 = 0.0042657952$$

Now, plug 'x' back into the Kb expression:

$$K_{b} = \frac{\chi^{2}}{(0.25 - \chi)} = \frac{(0.0042657952)^{2}}{0.25 - 0.0042657952} = 7.4 \times 10^{-5} = K_{b}$$

7