
If you add 0.400 moles of each reactant to a 4.00 L reaction vessel, what is the composition of the equilibrium mixture?

Start with the equilibrium expression:

$$K_{c} = 49 = \frac{[PC|_{S}]}{[PC|_{3}][C|_{1}]}$$
 These concentrations are all EQUILIBRIUM concentrations!

SPECIES	INITIAL CONCENTRATION	\triangle	EQUILIBRIUM CONCENTRATION
PC13	0.400mol = 0.100M	- X	0.100-X
Cl2	0.400mol = 0.100M	- X	O.100-x
PCIS		+X	X

$$\frac{[PC|_{S}]}{[PC|_{3}][C|_{1}]} = \frac{(x)}{(0.100-x)(0.100-x)} = 49$$

To solve the problem, we need to solve this expression for 'X'!

Rearrange the equation to make it easier to solve. In other words, try to isolate 'x' if possible.

$$\frac{(\chi)}{(0.100-\chi)(0.100-\chi)} = 49$$

$$\frac{\chi}{(0.100-\chi)^2} = 49$$

$$\chi = 49(0.100-\chi)^2$$

$$\chi = 49(0.100-\chi)^2$$

$$\chi = 49(0.000-0.200\chi + \chi^2)$$

$$\chi = 0.49 - 9.8\chi + 49\chi^2$$

$$0 = 49\chi^2 - 10.8\chi + 0.49$$

This equation is a QUADRATIC EQUATION:

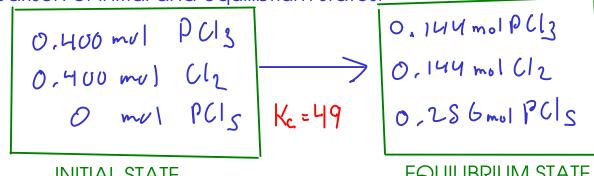
$$X = -b \pm \sqrt{b^2 - 4ac}$$

$$2a$$

Each quadratic equation has TWO solutions. However, only ONE of the two solutions makes chemical sense!

$$\chi = \frac{10.8 \pm \sqrt{(-10.8)^2 - 4(49)(0.49)}}{2(49)} = \frac{10.8 \pm \sqrt{20.6}}{98}$$

a=49 6=-10.8 c=0.49


This value for 'x' results in NEGATIVE concengtrations for both phosphorus trichloride and chlorine gas at equilibrium. This is not physically possible, so we throw out this solution.

	Initial	\triangle	Equilibrium
[PCI3]	4.00L 2.100	$- \times$	0,100-X
[[]	4,00 L - 100	-X	0,100 - X
[PCIS]	0	+×	X

Concentrations / at equilibrium

nber of moles in reaction vessel at equilibrium

Quick comparison of initial and equilibrium states:

INITIAL STATE

EQUILIBRIUM STATE