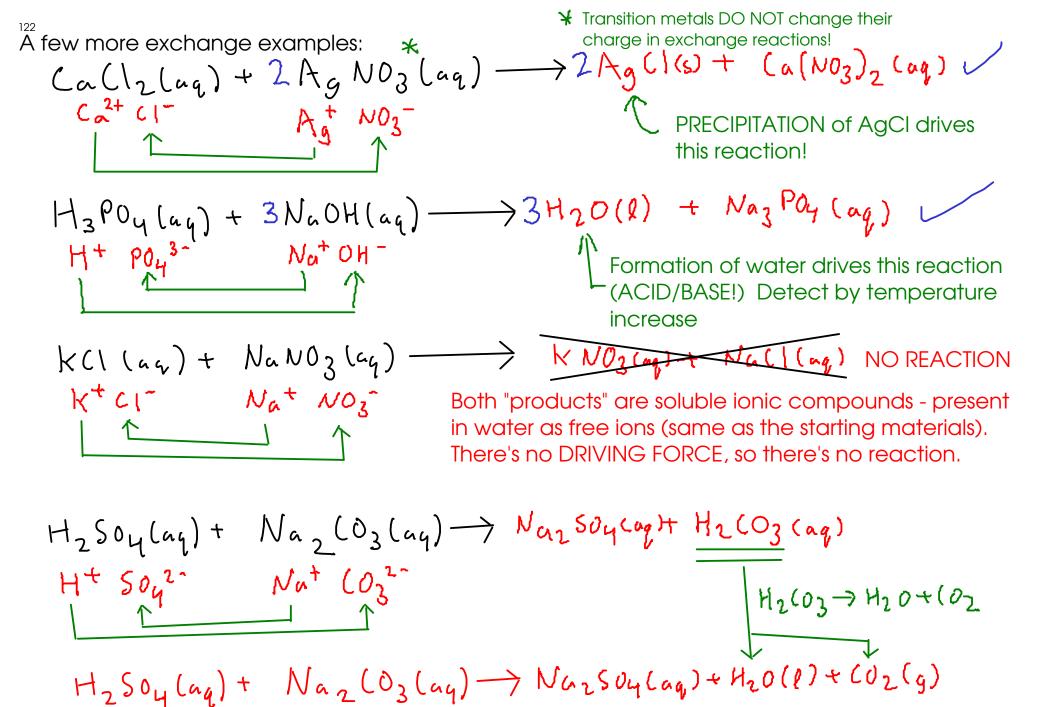
$$H_2SO_4(a_4)+2NaH(O_3(a_4)) \rightarrow Na_2SO_4(a_4)+2H_2CO_3(a_4)$$
 $H^+SO_4^2-Na^+H(O_3^-)$

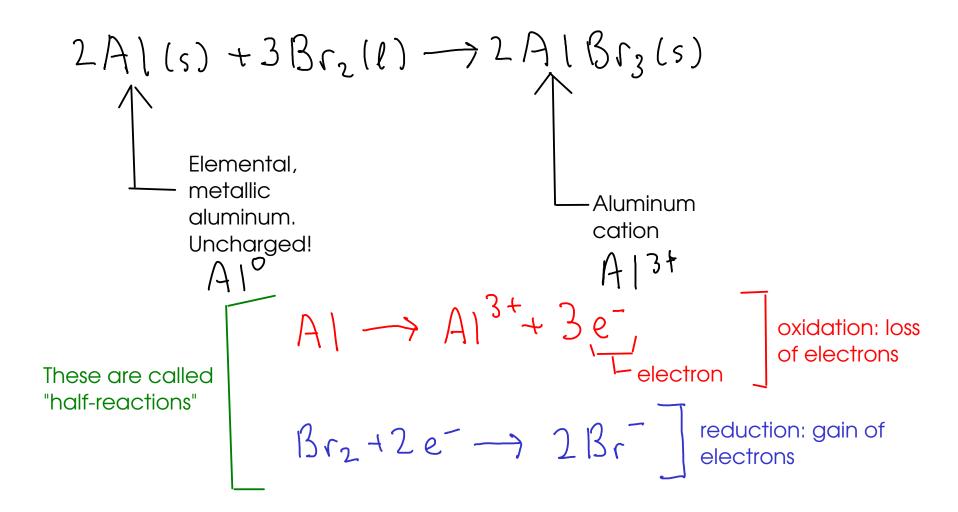
... but when we mix sulfuric acid and sodium bicarbonate, we observe BUBBLES. We need to write an equation that agrees with our observations. We know that carbonic acid decomposes, so we go ahead and put that into our equation.

$$H_2(O_3lag) \longrightarrow H_2O(l) + (O_2(g))$$


$$H_2SO_4(ag) + 2NaH(O_3lag) \rightarrow Na_2SO_4(ag) + 2H_2O(l) + 2(O_2(g))$$

Other molecules of interest:

 H_2 SO $_3$: sulfurous acid - React an ACID with a SULFITE


$$H_2So_3(u_g) \rightarrow H_2O(\ell) + So_2(g)$$

 H_2S - hydrogen sulfide (gas) - React an ACID with a SULFIDE

Driving force is the formation of CARBONIC ACID and its decomposition into water and CARBON DIOXIDE GAS.

- Exchange reactions involve ions pairing up, but the ions themseves are not formed in exchange reactions. Exchanges start with pre-existing ions.
- ... but the ions have to be produced somehow through a chemistry that involves the transfer of electrons.
 - oxidation / reduction chemistry ("redox" chemistry) involves transfer of electrons and can make ions.

- oxidation and reduction always occur together. In other words, we can't just make free electrons using oxidation without giving them somewhere to go.
- Many of the types of reactions that we learned about in previous courses are redox reactions!
 - COMBINATIONS (often but not always redox)
 - DECOMPOSITIONS (often redox)
 - SINGLE REPLACEMENT (always redox)

Culs) +2 Ag NO3 laq)
$$\rightarrow$$
 Culvo3)2 laq) + 2 Ag (s)

Cu \rightarrow Cu²⁺ + 2e⁻ oxidation

2 Ag + 2e⁻ \rightarrow 2 Ag (s) reduction

net conic \rightarrow Cu(s) + 2 Ag + (uq) \rightarrow (u²⁺(ag) + 2 Ag (c))

-COMBUSTION

2 Mg (s) + O2(g) \rightarrow 2 Mg O(s)

2 Mg (s) \rightarrow 2 mg²⁺ + 4e⁻ oxidation

O2 Cy) + 4e⁻ \rightarrow 20²⁻ reduction

A review of the reaction types we just mentioned:

COMBINATION REACTIONS

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 DECOMPOSITION REACTIONS

Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_2 O_2(\ell) \longrightarrow 2 H_2 O(\ell) + O_2(g)$$

- * This reaction is NOT a combustion reaction, even though O_2 is involved!
- * Combustion reactions CONSUME O₂, while this reaction PRODUCES O₂

(3) COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (O_2) to form OXIDES.
- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form: $AB + O_{2} \longrightarrow AO + BO$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

Oxidęs!

Examples:
$$\frac{1}{4}$$

$$\frac{1}{3}$$

$$\frac{1}$$

 $2mg(s) \leftarrow O_2(s) \longrightarrow 2mgO(s)$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (p151, 9th edition)

- Easy to spot, since there is an element "by itself" on each side of the equation.

Examples:
$$+1$$
 $\neq 2$ $\downarrow 2$ \downarrow

REDOX LANGUAGE

"oxidizer"

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.
- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.

$$2A(s) + 3Br_2(l) \rightarrow 2A(Br_3(s))$$

Aluminum is OXIDIZED during this process. We say that metallic aluminum is a REDUCING AGENT!

Bromine is REDUCED during this process. We say that bromine is an OXIDIZING AGENT!

- * Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).
 - * Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS

END OF CHAPTER 4 MATERIAL