0:4+2-6

$$3M_{9}Cl_{2}+2N_{a_{3}}PO_{4} \longrightarrow M_{g_{3}}(PO_{4})_{2}+6N_{a}Cl$$

$$(2H_2 + \frac{5}{2}O_2 \longrightarrow 2(O_2 + H_2O_2)$$

... to get a SINGLE oxygen atom from molecular oxygen, we need half of a molecule. So, to get 5 oxygen atoms, we need 5/2 molecules!

To get rid of the fraction, multiply ALL coefficients by the denominator (2)

$$H_2SO_H + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O \rightarrow H_1 \times H_2$$

0:4+2= 6

... initially, we will skip hydrogen and oxygen because they appear in more than one compound on each side of the equation!

IDENTIFYING REACTIONS

You may see one or more of these signs when a chemical reaction occurs

- (1) A <u>change in tempera</u>ture that can't be explained in another way.
- (2) Emission of light that can't be explained in another way
- 3 The formation of a solid or PRECIPITATION in a previously liquid solution. (Not a simple phase change!) or gas formation.
- (4)- Color change (not simply lightening of color caused by diluting a solution!)

- It's simpler to talk about different reactions if we can classify them into a small number of classes.
- Most of these reaction classes are reactions that involve TRANSFER OF ELECTRONS from one atom to another. The LAST class or reactions we will discuss does NOT involve electron transfer!

COMBINATION REACTIONS

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_2 O_2(\ell) \longrightarrow 2 H_2 O(\ell) + O_2(g)$$

- * This reaction is NOT a combustion reaction, even though O₂ is involved!
- * Combustion reactions CONSUME O_2 , while this reaction PRODUCES O_2

(3)

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN ($\dot{0}_{2}$) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:

$$AB + O_{\overline{A}} \rightarrow AO + BO$$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

Oxides!

$$\times$$
 C₃H₈(y) + 50₂(y) \longrightarrow 4H₂U(g) + 3C0₂(g)

$$2mg(s) + O_2(g) \longrightarrow 2mgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.

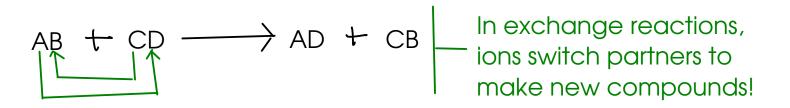
4 SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (more on that later!)

- Form:
$$A + BC \longrightarrow AC + B$$
 "A" and "B" are elements., often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.

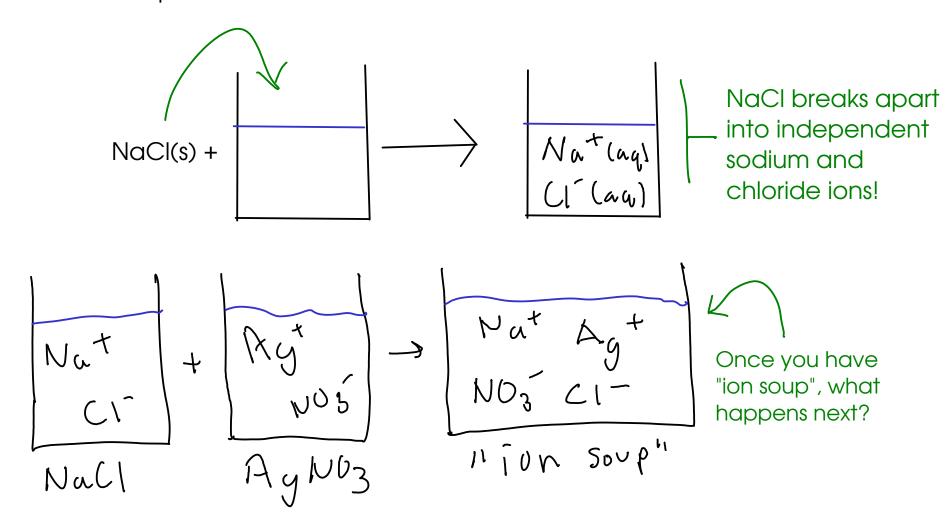
CLASSIFYING REACTIONS

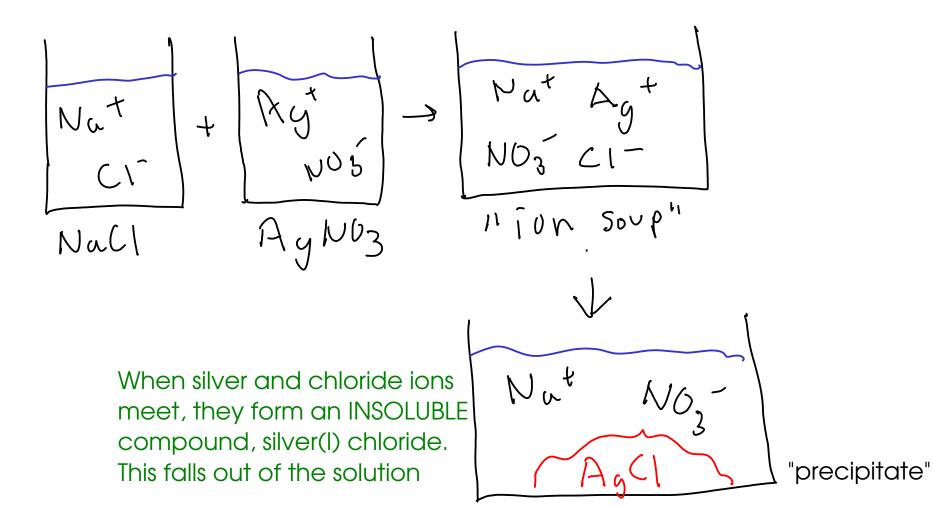

DOUBLE REPLACEMENT REACTIONS

- Also called "exchange" reactions
- The ions in two ionic compounds (one compound may also be an acid) EXCHANGE PARTNERS, forming two new compounds.

- Can be predicted based on the characteristics of the potential products (More on that later!)
- Occur in AQUEOUS SOLUTION

-Do not involve electron transfer. Examples: $3 \text{ Mg (1_2(aq) + 2Na_3 PO4 (aq)} \longrightarrow \text{ Mg3 (PO4)_2(s) + 6NaCl(aq)}$ $4 \text{ Ag NO3(aq)} + \text{ NaCl(aq)} \longrightarrow \text{ Ag Cl(s)} + \text{ NaNO3(aq)}$


DOUBLE REPLACEMENT (EXCHANGE) REACTIONS



... but HOW do they switch partners?

- (1) Exchange reactions almost always take place in AQUEOUS SOLUTION
- (1) In aqueous solution, IONIC THEORY applies!

- Briefly, ionic theory states that certain substances (like soluble ionic componds) break apart into their component ions when dissolved in water!

 $Nacl(aq) + AgNO_3lau) \rightarrow AgClls) + NaiVO_3lau)$ Formation of AgCl drives this reaction!