104

$$
\begin{aligned}
& 78.114 \mathrm{~g} / \mathrm{mul} \\
& \underset{\substack{\mathrm{C}_{6} \mathrm{H}_{6} \\
\text { benzene }}}{22.4 \mathrm{~g}} \mathrm{HNO}_{\text {nitric acid }} \longrightarrow \underset{\text { nitrobenzene }}{31.6 \mathrm{~g} \mathrm{ACTUAL}} \underset{\mathrm{C}_{2}}{ } \mathrm{H}_{2} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$123.111 \mathrm{~g} / \mathrm{mul}<$ - Formula weights
22.4 grams of benzene are reacted with excess nitric acid. If 31.6 grams of nitrobenzene are collected from the reaction, what is the percent yield?
To find the percent yield, we need to know both the THEORETICAL and ACTUAL yields of nitrobenzene. From the experiment, we already know the ACTUAL YIELD (31.6 g). We must CALCULATE the theoretical yield!

$$
\begin{aligned}
& 78.114 \mathrm{~g} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{6}=\operatorname{mol} \mathrm{C}_{6} \mathrm{H}_{6}\left|\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\right| 123.1 \mathrm{gg} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}=\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{\mathrm{S}} \mathrm{NO}_{2} \\
& \text { 22.4 } \mathrm{g}_{6} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{6} \mathrm{H}_{6}}{78.1 \mathrm{Hg}_{6} \mathrm{H}_{6}} \times \frac{\mathrm{mol}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{123 . \mathrm{Hg}_{\mathrm{G}} \mathrm{CH}_{5} \mathrm{HOO}_{2}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}=\frac{35.3 \mathrm{~g}}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}} \\
& \% \text { YIELD }=\frac{\text { ACTUAL YIELD }}{\text { THGORETICALYIELD }} \times 100 \% \\
& =\frac{31.6 \mathrm{~g}}{35.3 \mathrm{~g}} \times 100 \%=89.5 \%
\end{aligned}
$$

25.0 mL of acetic acid solution requires 37.3 mL of 0.150 M sodium hydroxide for complete reaction. The equation for this reaction is:

$$
\mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What is the molar concentration of the acetic acid?

$$
\frac{\mathrm{mol}_{\mathrm{HC}}^{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\mathrm{~L} \text { Solution }} \Leftarrow=25.0 \mathrm{~mL} \text { or } 0.0250 \mathrm{~L}
$$

Since we know the volume of solution, we just need to calculate MOLES of acid.

$$
\begin{aligned}
& 0.150 \mathrm{~mol} \mathrm{NaOH}=L \quad \mathrm{~mol} \mathrm{NaOH}=\mathrm{molHC} \mathrm{H}_{2} \mathrm{O}_{2} \\
& \text { units: } 37.3 \mathrm{~mL} \rightarrow 0.0373 \mathrm{~L} \\
& 0.0373 \mathrm{~L} \times \frac{0.150 \mathrm{~mol} \mathrm{NaOH}}{L} \times \frac{\mathrm{mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\operatorname{mol~NaOH}}=0.005595 \mathrm{~mol} \mathrm{HC} \mathrm{H}_{2} \mathrm{H}_{3} \\
& \text { So, } m=\frac{\text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\text { L Solution }}=\frac{0.005595 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{0.02502}=0.224 \mathrm{MHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

Shortcut: Use millimoles!

$$
\begin{aligned}
& 37.3 \mathrm{~mL} \times \frac{\mathrm{O}_{3} .15 \mathrm{~mol} \mathrm{NaOH}}{L} \times \frac{1 \mathrm{mo} \mid \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{NaOH}}=5.595 \mathrm{mmol} \mathrm{HC}_{2} \mathrm{~Hz}_{3} \mathrm{O}_{2} \\
& M=\frac{m 0 l}{L}=\frac{m m u l}{m L}=\frac{5.595 \mathrm{mmol} H C_{2} H_{3} \mathrm{O}_{2}}{25.0 \mathrm{~mL}}=0.224 \mathrm{NHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

$$
4 \underset{\substack{\text { propylene }}}{42.081 \mathrm{~g} \mid \mathrm{mol}} \underset{3}{\mathrm{H}_{6}}+6 \mathrm{NO} \longrightarrow \underset{\substack{\text { acrylonitrile }}}{\mathrm{S}_{3}^{3.064} \mathrm{H}_{3} \mathrm{~N} \mathrm{mul}^{2}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present.

$$
(6 s 1000 \mathrm{~g})
$$

1 - Convert mass propylene to moles using formula weight of propylene.
2 - Convert moles propylene to moles acrylonitrile using chemical equation
3 - Convert moles acrylonitrile to mass using formula weight of acrylonitrile

$$
\begin{gathered}
42.081 \mathrm{gC}_{3} \mathrm{H}_{6}=\mathrm{mol}_{3} \mathrm{H}_{6}\left|4 \mathrm{~mol}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right| 53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol}_{3} \mathrm{H}_{3} \mathrm{~N} \\
651000 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6} \times \frac{\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}}{42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}= \\
=821000 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}(821 \mathrm{Wg})
\end{gathered}
$$

$$
\begin{aligned}
& \\
& \begin{array}{l}
10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}
\end{array}+8 \mathrm{gl}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SF}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permangenate are needed to react with 3.36 g of iron(II) sulfate?
1 - Change the mass of iron(II) sulfate to moles using formula weight of iron(II) sulfate
2 - Change the moles of iron(II) sulfate to moles potassium permanganate using chemical equation
3 - Change moles of potassium permangenate to volume using concentration ($0.250 \mathrm{~mol} / \mathrm{L}$)

$$
\begin{aligned}
& 1 \mathrm{SI} .9 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol}_{\mathrm{g}} \mathrm{FeSO}_{4}\left|10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{~mol} \mathrm{KMnO}_{4}\right| 0.2 \mathrm{SO}_{\mathrm{mal} \mathrm{KmmO}_{4}}=\mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& m L=10^{-3} L \\
& 0.0177 \mathrm{~L} x \frac{\mathrm{~mL}}{10^{-3} \mathrm{~L}} \simeq 17.7 \mathrm{mLofo.250m} \mathrm{kmiO} \mathrm{H}
\end{aligned}
$$

