Some basic definitions:

```
Chemistry: SYSTEMATIC STUDY OF MATTER AND THE CHANGES IT UNDERGOES
Matter: ANYTHING THAT TAKES UP SPACE AND CAN BE PERCEIVED (or DETECTED)
```

... so what about "SYSTEMATIC STUDY"?

Systematic study? The scientific method

Scientific laws

- SUMmARY of observation often in equation form.
- Does not explain OBSERVATIONS

Scientific theories - an EXPLANATION of observations confirmed by repeated experiments - accepted by most scientists

You flip the light switch in your den, but nothing happens. What is wrong?
observation experiment: Flip switch, but no light.
hypothesis: Explanation: The bull is burned out.
Prediction: If the bill is paid, we d he lightChanging the bub will restore the light.
experiment:

Measurements

Measurements are COMPARISONS of properties against accepted standards, called units.

A properly-reported measurement has TWO PARTS:
(1) a measured NUMBER
(2) a UNIT

English/USUnits:
1 foot $=\underline{12}$ inches 1 yard $=\underline{3}$ feet $\quad 1$ mile $=\underline{1760}$ yards

$$
S 280 \mathrm{ft}=1 \mathrm{mi}
$$

So what's the problem? English units are not very consistent. They don't relate to one another in meaningful ways.

This makes the English system both hard to learn AND hard to use. All relationships between units must be memorized independently.

English units are nonstandard and difficult to use. Solution? THE METRIC SYSTEM

All metric units are made up of COMBINATIONS of BASE UNITS!

Metric Base Units:

Length	meter	m		
Mass	kilogram	kg		*we usually treat the gram as if it's the base unit
:---:				
for mass!				

Metric units may be made larger or smaller by adding PREFIXES.

Metric Prefixes:

mega-	10^{6}	M
kilo-	10^{3}	k
centi-	10^{-2}	c
milli-	10^{-3}	m
micro-	10^{-6}	μ

Applying prefixes

$$
\begin{aligned}
& 1 K m=10=10^{3} m(1000 \mathrm{~m}) 10 \times 10 \times 10=10^{3} \\
& \Lambda c m=10^{-2} m\left(\frac{1}{100} m\right) \frac{1}{10} \times \frac{1}{10}=10^{-2}
\end{aligned}
$$

Memorize these prefixes!
smaller units
Bigger units
smaller units

Scaling units with metric prefixes ... examples

The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

$$
k=10^{3} \text {, so } \mathrm{km}=10^{3} \mathrm{~m}(1000 \mathrm{~m})
$$

07 km
By "best suited", we mean a metric unit that would represent the number without many beginning or end zeros. These kinds of numbers are easier for us to remember!

A piece of chalk is 0.08 meters long. What metric unit would be best suited for this length?

$$
\begin{aligned}
& \text { is length? } \\
& C=10^{-2}, \text { so } \mathrm{cm}=10^{-2} \mathrm{~m}\left(1 / 100^{\mathrm{m}}\right)
\end{aligned}
$$

$$
8 \mathrm{~cm}
$$

- are units that are made up of combinations of metric base units with each other and/or with prefixes

$$
\text { Example: Speed } \frac{\text { miles }}{h r}, \frac{K m}{h r}\left(\frac{\text { length }}{\text { time }}\right), \frac{m}{s}
$$

Two derived units are particularly important in introductory chemistry:

1) VOLUME
2) DENSITY

VOLUME

$$
\text { VOLUME }=L \times W \times H
$$

What are the units of volume in the metric system?
$L=$ LENGTH. Base length unit: $\operatorname{METER}(\mathrm{m})$
L
$W=$ WIDTH. Also a length unit - METER
$H=$ HEIGHT. Also a length unit - METER

$$
\text { VOLUME }=\underset{L}{(m)} \times \underset{w}{(m)} \underset{w}{(m)}=m^{3} \text { "cubicmeters" }
$$

... but the CUBIC METER is too LARGE a unit for lab-scale work. We should use a smaller unit.

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

A smaller unit for volume?
cubic decimeters! dm^{3}

$$
(\text { decimeter }=1 / 10 \text { meter })
$$

Cubic decimeters are given the name "liters", abbreviation "L"
In the lab, we typically need an even smaller unit than the liter, so we use milliliters (mL)

$$
\begin{array}{c|}
\hline \text { "cc" } \\
\text { cubic centimeter } \\
= \\
\text { milliliter } \\
\hline
\end{array}
$$

$$
\begin{aligned}
& 1 m L=10^{-3 L} \\
& 1000 m L=1 L
\end{aligned}
$$

