0.100 M NaCl , Find pH

$$
\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

Check these ions to see if they are acidic, basic, or neutral
Na^{+}: Cannot be B-L acid (no protons), also not likely to be B-L base; positively charged.

C 1^{-}: Cannot be B-L acid (no protons). What about a base?

$$
\begin{aligned}
& \text { Hydrochloric acid is a STRONG ACID, meaning that } \\
& \text { it doesn't stay together in water. The reaction we } \\
& \begin{array}{l}
\text { wrote above is not likely to occur. Chloride ion, } \\
\text { therefore, is a neutral ion. }
\end{array}
\end{aligned}
$$

Since neither ion affects the water equilibrium, the pH of this solution should be 7.00 (same as distilled water)

POLYPROTIC ACIDS
Find pH of $\mathrm{O}_{1} 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1)
(2)
(3)

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& {\mathrm{H} \mathrm{PO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}}^{2}
\end{aligned}
$$

Phosphoric acid has THREE acidic protons!

$$
\begin{aligned}
& K_{a_{1}}=6.9 \times 10^{-3} \\
& K_{a_{2}}=6.2 \times 10^{-8} \\
& K_{a_{3}}=4.8 \times 10^{-13}
\end{aligned}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solving the equilibrium of phosphoric acid's first proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& K_{a}=6.9 \times 10^{-3}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}
\end{aligned}
$$

Species	[Initial]	Δ	[Equilibrium]
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	6	$+x$	x
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0.10-x$
$\frac{X^{2}}{0.10-x}=6.9 \times 10^{-3}$			

This time, we should solve the quadratic. The $x \ll 0.10$ might not be safe in this problem. (Ka isn't 1000x smaller than 0.10)

$$
\begin{aligned}
& x^{2}=\left(6.9 \times 10^{-4}\right)-\left(6.9 \times 10^{-3}\right) x \\
& x^{2}+\left(6.9 \times 10^{-3}\right) x-\left(6.9 \times 10^{-4}\right)=0 \\
& a=1, b=6.9 \times 10^{-3}, C=-6.9 \times 10^{-4} \\
& x=0.0230434426 \text { OR-0,0299434426} \\
& {\left[H_{3} 0^{+}\right], \text {so } \rho H=1.64}
\end{aligned}
$$

${ }^{155}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250. mL of solution.

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3}: \quad N: 2 \times 14.01 \\
& \mathrm{H}: 4 \times 1.008 \\
& 0: \frac{3 \times 16.00}{80.052} \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

Find out what kind of salt we have: acidic, basic, or neutral:

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}^{-} \\
& \mathrm{NO}_{3}^{-}: \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \begin{array}{l}
\text { Nitric acid is a strong acid, so nitrate ion must } \\
\text { be neutral }
\end{array} \\
& \mathrm{NH}_{4}^{+}: \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}+\begin{array}{l}
\text { Ammonia is a weak base, so ammonium ion } \\
\text { is a weak acid }
\end{array}
\end{aligned}
$$

So, we solve the equilibrium between ammonium ion

$$
\begin{aligned}
& \text { and water } \\
& \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& K_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \\
& \text {koa: } \\
& K_{b, \mathrm{NH}_{3}}=1.8 \times 10^{-5} \quad\left(p \mathrm{~A}-14, E b b_{\text {ing }}\right) \\
& \left(K_{a, \mathrm{NH}_{4}^{+}}\right)\left(\mathrm{K}_{1, \mathrm{NH}_{3}}\right)=1,0 \times 10^{-14} \\
& \text { So, } \mathrm{Ka}, \mathrm{NH}_{4}^{+}=5.56 \times 10^{-10}
\end{aligned}
$$

156

$$
K_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.56 \times 10^{-10}
$$

species	[Initial]	Δ	[Equilibrium]
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
NH_{3}	0	$+X$	x
$\mathrm{NH}_{4}{ }^{+}$	0.14990	$-x$	$0.14990-x$

To set this problem up further, we need to determine the initial ammonium ion concentration.

$$
3.00 \mathrm{y} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.052 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}} \times \frac{}{0.25 \mathrm{OL}}=0.14990 \mathrm{M}
$$

Solve the equilibrium...

$$
\begin{aligned}
& \frac{x^{2}}{0.14990-x}=5.56 \times 10^{-10} \\
& \downarrow x \ll 0.14990
\end{aligned} \quad \begin{aligned}
& x=9.13 \times 10^{-6}=\left[H_{3} 0^{+}\right] \\
& p H=5.04
\end{aligned}
$$

- resist pH change caused by either the addition of strong acid/base OR by dilution

Made in one of two ways:

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text {) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& k_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

(1) Take log of both sides
(2) Multiply by - 1
(3) Rearrange, solving for pH

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

$\left[\mathrm{A}^{-}\right] \ldots$ from the salt [HA] ... from the weak acid

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

159

$$
\begin{aligned}
& p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{array}{l}
\text { Henderson- } \\
\begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array} \\
\hline
\end{array}\right. \\
& \text { ex:acidic buffer } \\
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& p H=p h_{a} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right) \\
& \text { ex: basic buffer } \\
& \mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& p H=\mathrm{pKa}_{\mathrm{NH}_{4}^{+}}+\log _{y}\left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right) \\
& p K_{a}+p K_{b}=14,00 \ldots \text { is the -log of } K_{a} \times K_{b}=K_{w}
\end{aligned}
$$

