131
Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

$$
\begin{gathered}
55.8 \mathrm{sg} \mathrm{Fe}=m_{0} 1 \mathrm{Fe} \\
1.7 \mathrm{SmolFe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{m_{0} / \mathrm{Fe}}=97.7 \mathrm{~g} \mathrm{Fe}
\end{gathered}
$$

WHAT ABOUT COMPOUNDS? FORMULA WEIGHT

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
& \left(\mathrm{H}_{2} \mathrm{O}\right) \\
& \mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}: 2 \times 1.008=2.016 \\
& 0: \frac{1 \times 16.00=16,00}{18,016} / \text { FORMULA WEIGHT of water } \\
& 18.016 \mathrm{gH}_{2} \mathrm{O}=\mathrm{mol} \mathrm{H}_{2} \mathrm{O} \\
& \text { Formula weight = mass of one mole of } \\
& \text { either an element OR a compound! } \\
& 25.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=1.39 \mathrm{mul} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it;s called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

Example: How many grams of ammonium carbonate do we need to weigh out to get 3.65 moles of ammonium carbonate?

$$
\begin{array}{l|l}
\mathrm{NH}_{4}{ }^{+} \mathrm{CO}_{3}^{2-} & \mathrm{N:2} \mathrm{\times 14.01} \\
\mathrm{NH}_{4}^{+} & \left.\mathrm{H:8} \mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
\end{array} \begin{aligned}
& \mathrm{C}: 1.008 \\
& 0: 3 \times 12.01 \\
&
\end{aligned}
$$

$$
96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=\mathrm{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

$$
3.65 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{\mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=3 \mathrm{~S} / \mathrm{g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\mathrm{NH}_{4}{ }^{+} \quad \mathrm{NO}_{3}-
$$

$$
\begin{aligned}
\mathrm{NH}_{4} \mathrm{NO}_{3}: & \mathrm{N}: 2 \times 14.01=28.02 \\
H: 4 \times 1.008 & =4.032 \\
O: 3 \times 16.00 & =\frac{48.00}{80.052} \mathrm{~g} \mathrm{HH}_{4} \mathrm{NO}_{3}=\text { mol } \mathrm{NH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

These percentages should sum to 100%, but you may have a little roundoff error!

So far, we have
ch $8\left[\begin{array}{l}\text { - looked at how to determine the composition by mass of a compound } \\ \text { from a formula } \\ \text { - converted from MASS to MOLES (related to the number of atoms/molecules) } \\ \text { - converted from MOLES to MASS }\end{array}\right.$
Are we missing anything?
Sec - What about SOLUTIONS, where the desired chemical is not PURE, but 1s.4 found DISSOLVED IN WATER?
p457- - How do we deal with finding the moles of a desired chemical when it's in
462 solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
\begin{aligned}
M & =\text { MOLARITY }
\end{aligned} \begin{aligned}
& =\frac{\text { mules of solute }}{L \text { solution }} \\
6.0 \mathrm{MHCl} \text { solution: } & \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{aligned}
$$

There are 6.0 moles of hydrochloric acid in each liter of this solution, so you can write this relationship another way:

$$
6.0 \mathrm{~mol} \mathrm{HCl}=1 \mathrm{~L}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have? $\quad 6.0 \mathrm{~mol} \mathrm{HCl}=L$

$$
0.280 \mathrm{~L} \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~L}}=1.8 \mathrm{~mol} \mathrm{HCl}
$$

${ }^{137}$ If you need 0.657 moles of hydrochloric acid, how many milliliters of 0.0555 M HCl do you need to measure out?

$$
0,0555 \mathrm{~mol} \mathrm{HCl}=\mathrm{L} \quad \mathrm{~mL}=10^{-3} \mathrm{~L}
$$

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=\frac{11800 \mathrm{~mL} \text { of } 0.0555 \mathrm{~m} \mathrm{HCl}}{\begin{array}{l}
\text { This is an extremely large volume } \\
\text { for lab-scale work. We should use } \\
\text { a more concentrated HCl solution! }
\end{array}}
$$

What if we used 6.00 M HCl ?

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=\frac{\mathrm{mL}=10^{-3} \mathrm{~L}}{\begin{array}{l}
\text { This is a more practical lab } \\
\text { volume. Measure it with } \\
\text { a } 250 \mathrm{~mL} \text { cylinder (or just use } \\
\text { a } 100 \mathrm{~mL} \text { cylinder twice) }
\end{array}}
$$

If you're preparing a solution by dissolving a solid in water, you can easily calculate the molarity of the solution. How?
Just find the number of moles of solid you dissolved, then divide by the volume of the solution (expressed in liters!)

What is the molarity of a solution made by dissolving 3.50 g of NaCl in enough water to make $250 . \mathrm{mL}$ of solution?

$$
m=\frac{\text { moles } \mathrm{NaCl}}{\mathrm{~L} \text { solution }<250 \mathrm{~mL}=0.2 \mathrm{sol} \mathrm{~L}}
$$

1 - Find moles of sodium chloride dissolved using the FORMULA WEIGHT of NaCl
2 - Divide moles soldium chloride / LITERS of solution (Convert 250 mL to L)

$$
\begin{aligned}
& \mathrm{NaCl}: \mathrm{Na}: 1 \times 22.84 \\
& \mathrm{Cl}: \frac{1 \times 35.45}{58.44 \mathrm{~g}} \text { Find formula weight of } \mathrm{NaCl} \\
& 3.50 \mathrm{~g} \mathrm{NaCl} \times \frac{\mathrm{molNaCl}}{58.44 \mathrm{~g} \mathrm{aCl}}=0.059890 \mathrm{~mol} \mathrm{NaCl}
\end{aligned}
$$

(2)

$$
M=\frac{\text { males } \mathrm{NaCl}}{\mathrm{~L}_{\text {solution }}}=\frac{0.059890 \mathrm{~mol} \mathrm{NaCl}^{2}}{0.250 \mathrm{~L}}=0.240 \mathrm{M} \mathrm{NaCl}
$$

A few more examples...
\measuredangle Use FORMULA WEIGHT when relating mass and moles \downarrow
You have a 250.g bottle of silver(I) chloride (AgCl). How many moles of AgCl do you have?

$$
\begin{aligned}
& \mathrm{AgCl}: \mathrm{Ag}: 1 \times 107.9 \\
& C_{1}: 1 \times \frac{35.45}{143.35} \mathrm{AgCl}=\mathrm{mol} \mathrm{AgCl} \\
& \text { 250.g } \mathrm{AgCl}_{\mathrm{g}} \times \frac{\mathrm{mol} A \mathrm{gCl}}{143.35 \mathrm{gAgCl}}=1.74 \mathrm{~mol} \mathrm{AgCl}_{\mathrm{g} C}
\end{aligned}
$$

How many moles of NaOH are present in 155 mL of 1.50 M NaOH ?
When relating moles and VOLUME, we need to use CONCENTRATION (usually MOLARITY - M)

$$
\begin{aligned}
& \text { (usually MOLARITY - M) } \\
& 1.50 \mathrm{~mol} \mathrm{NaOH}=L \quad m L=10^{-3} \mathrm{~L}
\end{aligned}
$$

$$
15 S_{m L} \times \frac{10^{-3} L}{m L} \times \frac{1.50 \mathrm{~mol} \mathrm{NaOH}}{L}=0.233 \mathrm{~mol} \mathrm{NaOH}
$$

