${ }^{130}(A$ A) What is the concentration of hydronium ion in an aqueous solution whose pH is 10.50 ? (B) What is the hydroxide ion concentration? (C) What molar concentration of sodium hydroxide solution would provide this pH ?
A)

$$
\begin{aligned}
& \mathrm{pH}=10.5 \mathrm{SO}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=? \\
& \mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \longrightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10.50}=3.2 \times 10^{-11} \mathrm{MH} \mathrm{H}_{3} \mathrm{O}^{+}}
\end{aligned}
$$

B)

$$
\begin{aligned}
& P H+P O H=14.00 \\
& P O H=14.00-10.50=3.50 \\
& {\left[\mathrm{OH}^{-}\right] }=10^{-P O H}=10^{-3.50}=3.2 \times 10^{-4} \mathrm{M} \mathrm{OH} \\
& \hline O R\left[\mathrm{OH}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}=1.0 \times 10^{-14} \\
&\left(3.2 \times 10^{-11}\right][\mathrm{OH}]=1.0 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-4} \mathrm{~m} }
\end{aligned}
$$

C) Sodium hydroxide (NaOH) is a STRONG BASE

$$
\begin{array}{c|l}
\text { dioxide }(\mathrm{NaOH}) \text { is a STRONG BASE } & 1 \text { il ratio, so } \\
\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH} & 3.2 \times 10^{-4} \mathrm{M} \mathrm{NaOH}
\end{array}
$$

What is the pH of a sodium hydroxide solution made from dissolving 2.50 g of sodium hydroxide in enough water to make 500.0 mL of solution?
$\mathrm{NaOH}: 40.00 \mathrm{~g} / \mathrm{mol}$
Find molarity of the NaOH

$$
\begin{aligned}
& M=\frac{\text { moles } N a O H}{L}=0.500 O L \\
& 2.50 \mathrm{gaOH} \times \frac{\text { mol NaOH }}{40.00 \mathrm{~g} \mathrm{NaOH}}=0.0625 \mathrm{mal} \mathrm{NaOH} \\
& M=\frac{0.0625 \mathrm{mal}^{\mathrm{NaOH}}}{0.500 O L}=0.125 \mathrm{M} \mathrm{NaOH}
\end{aligned}
$$

2.sog

Sodium hydroxide is a strong base, so we expect it to completely ionize. The hydroxide concentration equals the NaOH concentration.

$$
\begin{aligned}
& \mathrm{NaOH}_{\mathrm{O}} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-1} \mathrm{SO} \\
& {\left[\mathrm{OH}^{-}\right]=[\mathrm{NH}]=0.125 \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0.12 \mathrm{~S})=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{4}\right]=8.0 \times 10^{-14}} \\
& \mathrm{OH}=13.10
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR, use } \\
& \text { DOH }=-\log _{10}(0.125)=0.90 \\
& p H+p O H=14.00 \\
& p H=14.00-0.90 \\
& P H=13.10
\end{aligned}
$$

