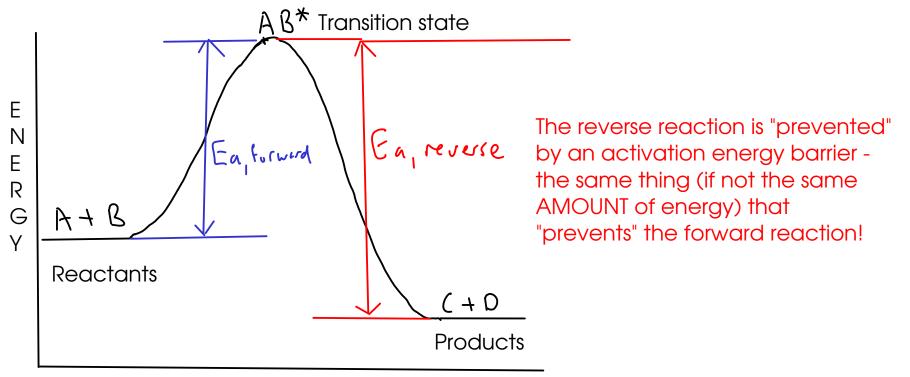

° CATALYSTS?

- So how does a catalyst fit into this picture? A catalyst LOWERS the activation energy for a reaction

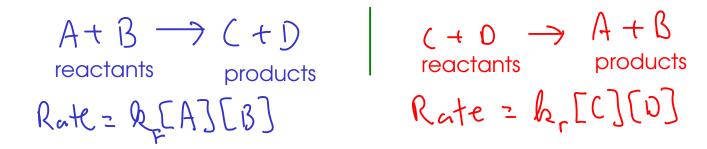
REACTION COORDINATE

- The exact mechanism by which a catalyst lowers the energy of the transition state may be simple ... or complex. As we mentioned before, some catalysts hold molecules so that it's easier for reactants to come together, some react with reactant molecules to produce an intermediate that reacts more easily with other reactants to make the final product, etc.

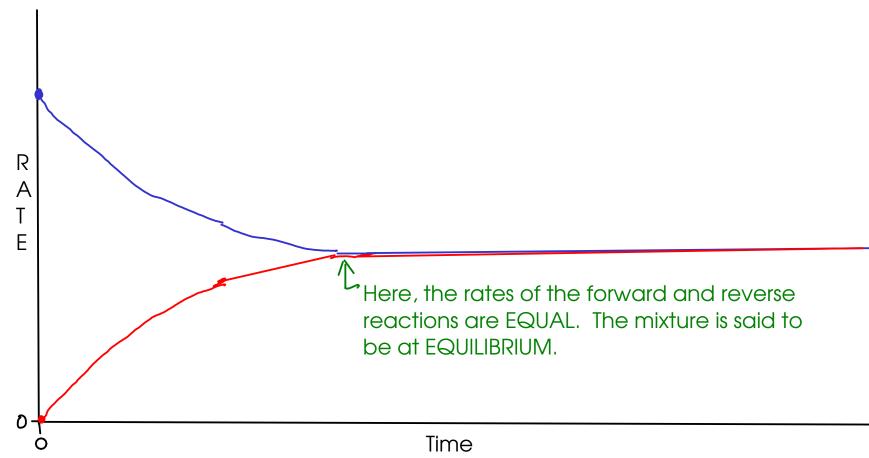

END OF MATERIAL FOR TEST #2

91 WHAT KEEPS A REACTION FROM GOING BACKWARDS?

$$\begin{array}{c|c} A+B \longrightarrow (+D) \\ reactants \end{array} \qquad \begin{array}{c} C+D \longrightarrow A+B \\ reactants \end{array} \qquad \begin{array}{c} reactants \end{array}$$


... what keeps the reaction on the right from occurring?

 $A + B \rightarrow C + D$



REACTION COORDINATE

So what really happens during a reaction? Both forward and reverse reactions occur!

- Let's look at the RATES of both the forward and reverse reactions over time.

- Initially, the mixture is all A and B. As C and D are formed, the rate of the reverse reaction increases while the rate of the forward reaction decreases. Eventually, these rates become equal.

- At EQUILIBRIUM, the concentrations of A, B, C, and D stop CHANGING. The reaction doesn't stop, but it appears stopped to an outside observer.

93 DESCRIBING EQUILIBRIUM

$$\frac{A + bB}{C} \rightleftharpoons \frac{\zeta (+ bB)}{C} \xrightarrow{\zeta} (+ bB)}{C}$$
Stoichiometric coefficients
- Double-headed arrow is often used to show that both the forward
and reverse reactions are important.
$$\int \frac{1}{C} = \frac{1}{C} \frac{1}{$$

- At equilibrium, the ratio above equals a constant number - the EQUILIBRIUM CONSTANT. The equilibrium constant depends on TEMPERATURE, but not on other factors.

- Not all reactants and products are included in the equilibrium constant expression!

94

$$PbI_2(s) \longrightarrow Pb^{2+}(aq) + 2I^{-}(aq)$$

$$K_{c} = [Pb^{2+}][J^{-}]^{2}$$

 (PbI_{2}) si

Since the concentration of SOLID lead(II) iodide is fixed by the crystal structure of the solid and does not change over the course of the reaction, we "fold it" into the equilibrium constant.

$$K_{c} = [Pb^{2+}][I^{-}]^{2} = 6.5 \times 10^{-9}$$

- Species whose CONCENTRATIONS do not change do not appear in the equilibrium constant expression. PURE SOLIDS and PURE LIQUIDS. Also, bulk SOLVENTS (like water when dealing with a reaction that takes place in water).

$$H(_{2}H_{3}O_{2}(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + (_{2}H_{3}O_{2}(aq))$$

$$K_{c} = \frac{[H_{3}O^{+}][(_{2}H_{3}O_{2}^{-}]]}{[H_{2}H_{3}O_{2}]} = 1.7 \times 10^{-5}$$
Since water is the solvent, there's enough of it so that the reaction doesn't really change the concentration of the water itself.
$$[H_{2}O] = \frac{19}{M_{2}O_{2}} + \frac{M_{2}O_{2}}{1000g} +$$

WHAT DOES AN EQUILIBRIUM CONSTANT TELL US?

95

- O Whether the final reaction mixture consists of mainly products or mainly reactants. In other words, which side of the reaction is "favored".
- Whether a reaction will proceed to the left or to the right when the reaction is not yet at equilibrium.
- 3 With more math, we can actually determine the final composition of an equilibrium mixture from the initial amount of reactant present WITHOUT doing an experiment!

⁹⁶ WHICH IS FAVORED? PRODUCT OR REACTANT?

$$aA + bB \rightleftharpoons c(+dD)$$

$$K_{c} = \frac{[c](0]^{d}}{[A]^{\alpha}[B]^{b}}$$

$$H(_{2}H_{3}O_{2}(aq) + H_{2}O(\ell) \rightleftharpoons H_{3}O^{+}(aq) + (_{2}H_{3}O_{2}^{-}(aq))$$

$$K_{c} = \frac{[H_{3}O^{+}][(_{2}H_{3}O_{2}^{-}]]}{[H(_{2}H_{3}O_{2}^{-}]]} = 1.7 \times 10^{-5}$$
To get a small value like this one, the DENOMINATOR of the equilibrium expression must be a lot larger than the NUMERATOR.
Since REACTANTS are the denominator of this fraction, this reaction favors REACTANTS at equilibrium!

- If Kc is small (<<1), then REACTANTS are favored at equilibrium

- If Kc is large (>>1), then PRODUCTS are favored at equilibrium.