CALCULATING HEAT OF REACTION (EXPERIMENT 6)

$$
Q_{\text {system }} t Q_{\text {cup }}+Q_{\text {wat tel }}=0 \bar{l} \begin{aligned}
& \text { First Law of Thermodynamics: } \\
& \text { conservation of energy }
\end{aligned}
$$

We want to solve for Qsystem, since it equals the heat of reaction at constant pressure. So, we need to know what Qcup and Qwater equal!

$$
Q_{\text {cup }}=\binom{\text { heat capacity }}{\text { of cup }} \text { lat in e a set of cups } \begin{aligned}
& \begin{array}{l}
\text { Heat capacity: The amount of } \\
\text { energy required to change the } \\
\text { temperature of an object by } \\
1 \text { degree } C \text {. }
\end{array} \\
& \text { like the ones in }
\end{aligned}
$$

$$
Q_{\text {system }}=-\left(Q_{\text {cup }}+Q_{\text {water }}\right)
$$

Since Qcup and Qwater are both positive, the sign of Qsystem is negative. In thermodynamics, the SIGN of Q tells the DIRECTION of energy transfer. A NEGATIVE Q means that energy is LEAVING the system. So, the reaction (our system) is EXOTHERMIC. It releases energy to the surroundings!

Qsystem depends on the amount of reactants used for the reaction. The more reactants used, the larger the magnittude of Qsystem will be. So, we'd like to express the heat of reaction in terms that DON'T depend on exactly how much reactant was used. We'll express the heat of reaction in this experiment in terms of the energy per mole reactant!

$$
\text { Qreaction }=\frac{\text { Qsystcm }}{\text { (moles of limiting reactant) }} \begin{aligned}
& \text { Find the moles of limiting reactant by calculating } \\
& \begin{array}{l}
\text { EITHER the number of moles of acid or the number } \\
\text { of moles of base you put into the cup. (Whichever } \\
\text { one you put in less of is the limiting reactant) }
\end{array}
\end{aligned}
$$

