Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present. (6500)

1 - Convert mass propylene to moles propylene using the formula weight of propylene

- 2 Convert moles propylene to moles acrylonitrile using chemical equation
- 3 Convert moles acrylonitrile to mass using formula weight of acrylonitrile

$$651000 g (_{3}H_{6} \times \frac{m_{0} l (_{3}H_{6}}{42.081 g (_{3}H_{6}} \times \frac{4m_{0} l (_{3}H_{3}N}{4m_{0} l (_{3}H_{6}} \times \frac{53.064 g (_{3}H_{3}N}{m_{0} l (_{3}H_{3}N)} =$$

$$= 821000 g (_{3}H_{3}N) (821 kg)$$

106

$$\frac{107}{10 \operatorname{FeSO}_{4} + 2 \operatorname{KmnO}_{4} + 8 \operatorname{H}_{2} \operatorname{SO}_{4} \rightarrow 5 \operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} + 2 \operatorname{MnSO}_{4} + \operatorname{K}_{2} \operatorname{SO}_{4}}{+ 8 \operatorname{H}_{2} \mathrm{O}}$$

How many mL of 0.250M potassium permangenate are needed to react with 3.36 g of iron(II) sulfate?

1 - Change the mass of iron(II) sulfate to moles using formula weight of iron(II) sulfate

2 - Change the moles of iron(II) sulfate to moles potassium permangenate using chemical equation

3 - Change moles of potassium permangenate to volume using concentration (0.250 mol/L)

$$\frac{151.90 \text{g} \text{Feso}_{y} = \text{mol} \text{Feso}_{y}}{10 \text{ mol} \text{Feso}_{y} = 2 \text{ mol} \text{KMnOy}} = 0.250 \text{ mol} \text{KMnOy} = L$$

$$\frac{3.36 \text{g} \text{Feso}_{y} \times \frac{\text{mol} \text{Feso}_{y}}{151.90 \text{g} \text{Feso}_{y}} \times \frac{2 \text{mol} \text{KMnOy}}{10 \text{ mol} \text{Feso}_{y}} \times \frac{L}{0.250 \text{ mol} \text{KMnOy}} = 0.0177 L$$

$$\frac{\text{m}L}{10^{-3} \text{L}} = 17.7 \text{ mL of } 0.250 \text{ M} \text{KMnOy}$$

- electrolytes: substances that dissolve in water to form charge-carrying solutions

* Electrolytes form ions in solution - (ions that are mobile are able to carry charge!). These IONS can undergo certain kinds of chemistry!

IONIC THEORY

the idea that certain compounds DISSOCIATE in water to form free IONS	
What kind of compounds?	
- Soluble ionic compounds	The ions formed may interact with each other to
- Acids (strong AND weak)	form NEW compounds!
- Bases (strong AND weak)	
	Strong vs weak?
	- If an electrolyte COMPLETELY IONIZES in water, it's said to be STRONG
	- If an electrolyte only PARTIALLY IONIZES in water, it's said to be WEAK
	- Both kinds of electrolyte undergo similar kinds of chemistry.

The ionic theory experiment (page 109) will be done in Tuesday's class

What good is ionic theory?

- provides an easy-to-understand MECHANISM for certain kinds of chemical reactions.

- "Exchange" reactions. (a.k.a "double replacement" reactions)

110

Looking a bit more closely...

during the course of the reaction!)

- The net ionic equation tells us that any source of aqueous silver and chloride ions will exhibit this same chemistry, not just silver nitrate and sodium chloride!

111

¹¹² A bit more about molecular, ionic, and net ionic equations

- molecular equations: Represent all substances (even ionic substances) as if they were molecules. Include spectator ions, and do not show charges on ions. Traditional chemical equations.

- ionic equations: Show all free ions - including spectators - in a chemical reaction. Molecules and WEAK electrolytes are shown as molecules. STRONG electrolytes (like HCI) are shown as ions. Ions that are part of <u>undissolved ionic compounds</u> are shown as molecules.

- NET ionic equation: An ionic equation that leaves out spectator ions. Intended to show only things that actually change in a reaction.

$$\begin{array}{l} \operatorname{Ag}\operatorname{ND}_{2}(\operatorname{aq}) + \operatorname{Nu}\operatorname{Cl}(\operatorname{au}) \to \operatorname{Ag}\operatorname{Cl}(\operatorname{s}) + \operatorname{Nu}\operatorname{ND}_{2}(\operatorname{aq}) \\ \operatorname{Ag}^{\dagger}(\operatorname{au}) + \operatorname{NO}_{2}^{\dagger}(\operatorname{au}) + \operatorname{Nu}^{\dagger}(\operatorname{au}) + \operatorname{Cl}^{\dagger}(\operatorname{au}) \to \operatorname{Ag}\operatorname{Cl}(\operatorname{s}) + \operatorname{Nu}^{\dagger}(\operatorname{au}) + \operatorname{NO}_{2}^{\dagger}(\operatorname{au}) \\ \operatorname{Ag}^{\dagger}(\operatorname{au}) + \operatorname{Cl}^{-}(\operatorname{au}) \to \operatorname{Ag}\operatorname{Cl}(\operatorname{s}) \end{array}$$

* You can get from the complete ionic equation to the net ionic equation by crossing out the spectator ions on both sides.

"Undissolved ionic compounds":

How can I tell if an ionic compound dissolves in water?

- consult experimental data: "solubility rules", or use the course web site!

A few of the "rules"...

- Compounds that contain a Group IA cation (or ammonium) are soluble
- Nitrates and acetates are soluble
- Carbonates, phosphates, and hydroxides tend to be insoluble

See p129 9th edition