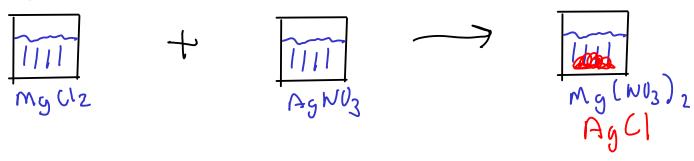
- are the "recipes" in chemistry
- show the substances going into a reaction, substances coming out of the reaction, and give other information about the process

$$\text{MgCl}_{2}(aq) + 2 \text{AgNO}_{3}(aq) \xrightarrow{\text{"yields"}} 2 \text{Ag(|s)} + \text{Mg(NO}_{3})_{2}(aq)$$

REACTANTS - materials that are needed for a reaction


PRODUCTS - materials that are formed in a reaction

COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others

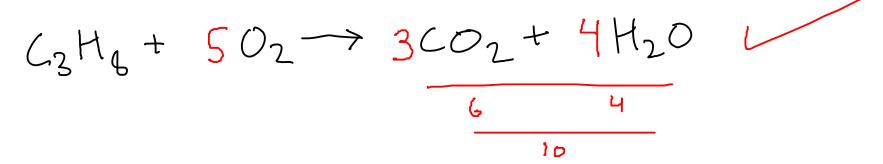
PHASE LABELS - give the physical state of a substance:

- (s) -solid
- (I) liquid
- (g) gas

(aq) - aqueous. In other words, dissolved in water

CHEMICAL EQUATIONS

$$2 \text{ Mg(s)} + O_2(g) \xrightarrow{\Delta} 2 \text{ MgO(s)}$$


REACTION CONDITIONS - give conditions necessary for chemical reaction to occur. May be:

- \triangle apply heat
- catalysts substances that will help reaction proceed faster
- other conditions, such as required temperatures
- Reaction conditions are usually written above the arrow, but may also be written below if the reaction requires several steps or several different conditions

COEFFICIENTS

- Experimentally, we can usually determine the reactants and products of a reaction
- We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process called BALANCING
- BALANCING a chemical equation is making sure the same number of atoms of each element go into a reaction as come out of it.
- A properly balanced chemical equation has the smallest whole number ratio of reactants and products.
- There are several ways to do this, but we will use a modified trial-and-error procedure.

BALANCING

- Pick an element. Avoid (if possible) elements that appear in more than one substance on each side of the equation.
- Change the coefficients on substances containing this element so that the same number of atoms of the element are present on each side. CHANGE AS LITTLE AS POSSIBLE!
- Repeat 1-2 until all elements are done.
- Go back and quickly <u>VERIFY</u> that you have the same number of atoms of each element on each side, If you used any fractional coefficients, multiply each coefficient by the DENOMINATOR of your fraction.

Use SMALLEST WHOLE NUMBER RATIOS!

$$3M_{9}Cl_{2} + 2N_{a_{3}}PO_{4} \longrightarrow M_{g_{3}}(PO_{4})_{2} + 6N_{\alpha}Cl_{4}$$

$$(2H_2 + \frac{5}{2}O_2 \longrightarrow 2(O_2 + H_2O_2)$$

... to get a SINGLE oxygen atom from molecular oxygen, we need HALF of a molecule. So, to get 5 atoms, we need 5/2 oxygen molecules!

.. to get rid of this fraction, multiply ALL coefficients by the denominator of the fraction.

$$2C_2H_2 + 5O_2 \rightarrow 4(O_2 + 2H_2O)$$

$$H_2SO_H + 2NaOH \longrightarrow$$

H: 4 (2+2)

0:6(4+2)

H: X4

0:6(412)~

IDENTIFYING REACTIONS

You may see one or more of these signs when a chemical reaction occurs

- (1) A <u>change in tempera</u>ture that can't be explained in another way.
- (2) Emission of light that can't be explained in another way
- 3 The <u>formation of a solid</u> or PRECIPITATION in a previously liquid solution. (Not a simple phase change!) or gas formation.
- (4) Color change (not simply lightening of color caused by diluting a solution!)

- It's simpler to talk about different reactions if we can classify them into a small number of classes.
- Most of these reaction classes are reactions that involve TRANSFER OF ELECTRONS from one atom to another. The LAST class or reactions we will discuss does NOT involve electron transfer!

COMBINATION REACTIONS

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_2 O_2(\ell) \longrightarrow 2 H_2 O(\ell) + O_2(g)$$

- * This reaction is NOT a combustion reaction, even though O₂ is involved!
- * Combustion reactions CONSUME O₂, while this reaction PRODUCES O₂

(3)

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (O_2) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned

substance!

- Form:

$$AB + O_{2} \longrightarrow AO + BO$$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

Oxides!

$$\times$$
 C₃H₈(y) + 50₂(g) \longrightarrow 4H₂U(g) + 3C0₂(g)

$$2mg(s) + O_2(g) \longrightarrow 2mgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.